Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
7 result(s) for "Perdikis, Serafeim"
Sort by:
The Cybathlon BCI race: Successful longitudinal mutual learning with two tetraplegic users
This work aims at corroborating the importance and efficacy of mutual learning in motor imagery (MI) brain-computer interface (BCI) by leveraging the insights obtained through our participation in the BCI race of the Cybathlon event. We hypothesized that, contrary to the popular trend of focusing mostly on the machine learning aspects of MI BCI training, a comprehensive mutual learning methodology that reinstates the three learning pillars (at the machine, subject, and application level) as equally significant could lead to a BCI-user symbiotic system able to succeed in real-world scenarios such as the Cybathlon event. Two severely impaired participants with chronic spinal cord injury (SCI), were trained following our mutual learning approach to control their avatar in a virtual BCI race game. The competition outcomes substantiate the effectiveness of this type of training. Most importantly, the present study is one among very few to provide multifaceted evidence on the efficacy of subject learning during BCI training. Learning correlates could be derived at all levels of the interface-application, BCI output, and electroencephalography (EEG) neuroimaging-with two end-users, sufficiently longitudinal evaluation, and, importantly, under real-world and even adverse conditions.
Hebbian plasticity induced by temporally coincident BCI enhances post-stroke motor recovery
Functional electrical stimulation (FES) can support functional restoration of a paretic limb post-stroke. Hebbian plasticity depends on temporally coinciding pre- and post-synaptic activity. A tight temporal relationship between motor cortical (MC) activity associated with attempted movement and FES-generated visuo-proprioceptive feedback is hypothesized to enhance motor recovery. Using a brain–computer interface (BCI) to classify MC spectral power in electroencephalographic (EEG) signals to trigger FES-delivery with detection of movement attempts improved motor outcomes in chronic stroke patients. We hypothesized that heightened neural plasticity earlier post-stroke would further enhance corticomuscular functional connectivity and motor recovery. We compared subcortical non-dominant hemisphere stroke patients in BCI-FES and Random-FES (FES temporally independent of MC movement attempt detection) groups. The primary outcome measure was the Fugl-Meyer Assessment, Upper Extremity (FMA-UE). We recorded high-density EEG and transcranial magnetic stimulation-induced motor evoked potentials before and after treatment. The BCI group showed greater: FMA-UE improvement; motor evoked potential amplitude; beta oscillatory power and long-range temporal correlation reduction over contralateral MC; and corticomuscular coherence with contralateral MC. These changes are consistent with enhanced post-stroke motor improvement when movement is synchronized with MC activity reflecting attempted movement.
Metal-Oxide Heterojunction: From Material Process to Neuromorphic Applications
As technologies like the Internet, artificial intelligence, and big data evolve at a rapid pace, computer architecture is transitioning from compute-intensive to memory-intensive. However, traditional von Neumann architectures encounter bottlenecks in addressing modern computational challenges. The emulation of the behaviors of a synapse at the device level by ionic/electronic devices has shown promising potential in future neural-inspired and compact artificial intelligence systems. To address these issues, this review thoroughly investigates the recent progress in metal-oxide heterostructures for neuromorphic applications. These heterostructures not only offer low power consumption and high stability but also possess optimized electrical characteristics via interface engineering. The paper first outlines various synthesis methods for metal oxides and then summarizes the neuromorphic devices using these materials and their heterostructures. More importantly, we review the emerging multifunctional applications, including neuromorphic vision, touch, and pain systems. Finally, we summarize the future prospects of neuromorphic devices with metal-oxide heterostructures and list the current challenges while offering potential solutions. This review provides insights into the design and construction of metal-oxide devices and their applications for neuromorphic systems.
Sensory threshold neuromuscular electrical stimulation fosters motor imagery performance
Motor imagery (MI) has been largely studied as a way to enhance motor learning and to restore motor functions. Although it is agreed that users should emphasize kinesthetic imagery during MI, recordings of MI brain patterns are not sufficiently reliable for many subjects. It has been suggested that the usage of somatosensory feedback would be more suitable than standardly used visual feedback to enhance MI brain patterns. However, somatosensory feedback should not interfere with the recorded MI brain pattern. In this study we propose a novel feedback modality to guide subjects during MI based on sensory threshold neuromuscular electrical stimulation (St-NMES). St-NMES depolarizes sensory and motor axons without eliciting any muscular contraction. We hypothesize that St-NMES does not induce detectable ERD brain patterns and fosters MI performance. Twelve novice subjects were included in a cross-over design study. We recorded their EEG, comparing St-NMES with visual feedback during MI or resting tasks. We found that St-NMES not only induced significantly larger desynchronization over sensorimotor areas (p<0.05) but also significantly enhanced MI brain connectivity patterns. Moreover, classification accuracy and stability were significantly higher with St-NMES. Importantly, St-NMES alone did not induce detectable artifacts, but rather the changes in the detected patterns were due to an increased MI performance. Our findings indicate that St-NMES is a promising feedback in order to foster MI performance and cold be used for BMI online applications. •Novel feedback based on sensory-threshold neuromuscular stimulation (St-NMES).•St-NMES significantly improved EEG neural correlates of motor imagery St-NMES improved subjects' classification accuracy of motor imagery.•St-NMES did not induce any artifactual brain patterns.•St-NMES is a promising feedback for brain-machine interface (BMI) applications.
Context-aware learning for generative models
This work studies the class of algorithms for learning with side-information that emerge by extending generative models with embedded context-related variables. Using finite mixture models (FMM) as the prototypical Bayesian network, we show that maximum-likelihood estimation (MLE) of parameters through expectation-maximization (EM) improves over the regular unsupervised case and can approach the performances of supervised learning, despite the absence of any explicit ground truth data labeling. By direct application of the missing information principle (MIP), the algorithms' performances are proven to range between the conventional supervised and unsupervised MLE extremities proportionally to the information content of the contextual assistance provided. The acquired benefits regard higher estimation precision, smaller standard errors, faster convergence rates and improved classification accuracy or regression fitness shown in various scenarios, while also highlighting important properties and differences among the outlined situations. Applicability is showcased with three real-world unsupervised classification scenarios employing Gaussian Mixture Models. Importantly, we exemplify the natural extension of this methodology to any type of generative model by deriving an equivalent context-aware algorithm for variational autoencoders (VAs), thus broadening the spectrum of applicability to unsupervised deep learning with artificial neural networks. The latter is contrasted with a neural-symbolic algorithm exploiting side-information.
Chapter 57 - Brain–machine interfaces
This chapter introduces the field of brain–machine interfaces (BMIs), also called brain–computer interfaces (BCIs), which has seen impressive achievements over the past few years. A BMI monitors the user’s brain activity, extracts specific features from the brain signals that reflect the intent of the subject, and translates them into actions. BMI technology offers a natural way to restore or augment human capabilities by providing a new interaction link with the outside world and, thus, it is particularly relevant as an aid for patients with severe neuromuscular disabilities. The chapter will first review the different kind of brain signals that can be recorded as input for a BMI. Then, it will discuss a set of principles allowing to build efficient BMIs that are largely independent of the particular signal of choice. These principles are particularly suitable for reliable and long-term operation of neuroprostheses. The chapter will conclude with a discussion of future research directions in the field of BMI.
Real-time Detection of Driver’s Movement Intention in Response to Traffic Lights
Movements are preceded by certain brain states that can be captured through various neuroimaging techniques. Brain-Computer Interfaces can be designed to detect the movement intention brain state during driving, which could be beneficial in improving the interaction between a smart car and its driver, by providing assistance in-line with the driver’s intention. In this paper, we present an Electroencephalogram based decoder of such brain states preceding movements performed in response to traffic lights in two experiments: in a car simulator and a real car. The results of both experiments (N=10: car simulator, N=8: real car) confirm the presence of anticipatory Slow Cortical Potentials in response to traffic lights for accelerating and braking actions. Single-trial classification performance exhibits an Area Under the Curve (AUC) of 0.71±0.14 for accelerating and 0.75±0.13 for braking. The AUC for the real car experiment are 0.63±0.07 and 0.64±0.13 for accelerating and braking respectively. Moreover, we evaluated the performance of real-time decoding of the intention to brake during online experiments only in the car simulator, yielding an average accuracy of 0.64±0.1. This paper confirm the existence of the anticipatory slow cortical potentials and the feasibility of single-trial detection these potentials in driving scenarios.