Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
71
result(s) for
"Perea, Daniel E."
Sort by:
Visualizing the iron atom exchange front in the Fe(II)-catalyzed recrystallization of goethite by atom probe tomography
2019
The autocatalytic redox interaction between aqueous Fe(II) and Fe(III)-(oxyhydr)oxide minerals such as goethite and hematite leads to rapid recrystallization marked, in principle, by an atom exchange (AE) front, according to bulk iron isotopic tracer studies. However, direct evidence for this AE front has been elusive given the analytical challenges of mass-resolved imaging at the nanoscale on individual crystallites. We report successful isolation and characterization of the AE front in goethite microrods by 3D atom probe tomography (APT). The microrods were reacted with Fe(II) enriched in tracer 57Fe at conditions consistent with prior bulk studies. APT analyses and 3D reconstructions on cross-sections of the microrods reveal an AE front that is spatially heterogeneous, at times penetrating several nanometers into the lattice, in a manner consistent with defect-accelerated exchange. Evidence for exchange along microstructural domain boundaries was also found, suggesting another important link between exchange extent and initial defect content. The findings provide an unprecedented view into the spatial and temporal characteristics of Fe(II)-catalyzed recrystallization at the atomic scale, and substantiate speculation regarding the role of defects controlling the dynamics of electron transfer and AE interaction at this important redox interface.
Journal Article
High-resolution detection of Au catalyst atoms in Si nanowires
by
Wang, Peng
,
Li, Z.Y.
,
Allen, Jonathan E.
in
Chemistry and Materials Science
,
Electrons
,
Gold - analysis
2008
The potential for the metal nanocatalyst to contaminate vapour–liquid–solid grown semiconductor nanowires has been a long-standing concern, because the most common catalyst material, Au, is highly detrimental to the performance of minority carrier electronic devices. We have detected single Au atoms in Si nanowires grown using Au nanocatalyst particles in a vapour–liquid–solid process. Using high-angle annular dark-field scanning transmission electron microscopy, Au atoms were observed in higher numbers than expected from a simple extrapolation of the bulk solubility to the low growth temperature. Direct measurements of the minority carrier diffusion length versus nanowire diameter, however, demonstrate that surface recombination controls minority carrier transport in as-grown n-type nanowires; the influence of Au is negligible. These results advance the quantitative correlation of atomic-scale structure with the properties of nanomaterials and can provide essential guidance to the development of nanowire-based device technologies.
Journal Article
Atom Probe Tomographic Mapping Directly Reveals the Atomic Distribution of Phosphorus in Resin Embedded Ferritin
2016
Here we report the atomic-scale analysis of biological interfaces within the ferritin protein using atom probe tomography that is facilitated by an advanced specimen preparation approach. Embedding ferritin in an organic polymer resin lacking nitrogen provided chemical contrast to visualise atomic distributions and distinguish the inorganic-organic interface of the ferrihydrite mineral core and protein shell, as well as the organic-organic interface between the ferritin protein shell and embedding resin. In addition, we definitively show the atomic-scale distribution of phosphorus as being at the surface of the ferrihydrite mineral with the distribution of sodium mapped within the protein shell environment with an enhanced distribution at the mineral/protein interface. The sample preparation method is robust and can be directly extended to further enhance the study of biological, organic and inorganic nanomaterials relevant to health, energy or the environment.
Journal Article
The role of metal vacancies during high-temperature oxidation of alloys
by
Oleksak, Richard P.
,
Holcomb, Gordon R.
,
Perea, Daniel. E.
in
639/301/1023/1026
,
639/301/299/892
,
639/301/930/328/2082
2018
An improved understanding of high-temperature alloy oxidation is key to the design of structural materials for next-generation energy conversion technologies. An often overlooked, yet fundamental aspect of this oxidation process concerns the fate of the metal vacancies created when metal atoms are ionized and enter the growing oxide layer. In this work, we provide direct experimental evidence showing that these metal vacancies can be inseparably linked to the oxidation process beginning at the very early stages. The coalescence of metal vacancies at the oxide/alloy interface results initially in the formation of low-density metal and eventually in nm-sized voids. The simultaneous and subsequent oxidation of these regions fills the vacated space and promotes adhesion between the growing oxide and the alloy substrate. These structural transformations represent an important deviation from conventional metal oxidation theory, and this improved understanding will aid in the development of new structural alloys with enhanced oxidation resistance.
Oxidation: active vacancies
Instead of annihilating, vacancies created early during high-temperature oxidation of a nickel superalloy coalesce into low-density regions. A team led by Richard Oleksak from the National Energy Technology Laboratory in Oregon, USA, used scanning transmission electron microscopy and atom probe tomography to characterize the surface of a nickel superalloy early in the oxidation process. Under the oxide layer, the metal substrate had many voids, and was rich in aluminum oxide. Contrary to conventional metal oxidation theory, vacancies coalesced to form clusters and nanovoids near the oxide/alloy interface while aluminum was selectively oxidized, creating a region of low-density metal rich in aluminum oxide under the surface, which was then incorporated into the growing surface oxide. Research into early and long-term oxidation mechanisms will help better design stable alloys.
Journal Article
Efficient conversion of low-concentration nitrate sources into ammonia on a Ru-dispersed Cu nanowire electrocatalyst
by
Gao, Guanhui
,
Kim, Jung Yoon Timothy
,
Meira, Debora Motta
in
Air stripping
,
Ammonia
,
Ammonium chloride
2022
Electrochemically converting nitrate ions, a widely distributed nitrogen source in industrial wastewater and polluted groundwater, into ammonia represents a sustainable route for both wastewater treatment and ammonia generation. However, it is currently hindered by low catalytic activities, especially under low nitrate concentrations. Here we report a high-performance Ru-dispersed Cu nanowire catalyst that delivers an industrial-relevant nitrate reduction current of 1 A cm–2 while maintaining a high NH3 Faradaic efficiency of 93%. More importantly, this high nitrate-reduction catalytic activity enables over a 99% nitrate conversion into ammonia, from an industrial wastewater level of 2,000 ppm to a drinkable water level <50 ppm, while still maintaining an over 90% Faradaic efficiency. Coupling the nitrate reduction effluent stream with an air stripping process, we successfully obtained high purity solid NH4Cl and liquid NH3 solution products, which suggests a practical approach to convert wastewater nitrate into valuable ammonia products. Density functional theory calculations reveal that the highly dispersed Ru atoms provide active nitrate reduction sites and the surrounding Cu sites can suppress the main side reaction, the hydrogen evolution reaction.Nitrate, a common pollutant in wastewater and groundwater, has been efficiently converted into valuable ammonia products via an electrochemical method using Ru-dispersed Cu nanowire as the catalyst.
Journal Article
Fungal hyphae develop where titanomagnetite inclusions reach the surface of basalt grains
2022
Nutrient foraging by fungi weathers rocks by mechanical and biochemical processes. Distinguishing fungal-driven transformation from abiotic mechanisms in soil remains a challenge due to complexities within natural field environments. We examined the role of fungal hyphae in the incipient weathering of granulated basalt from a three-year field experiment in a mixed hardwood-pine forest (S. Carolina) to identify alteration at the nanometer to micron scales based on microscopy-tomography analyses. Investigations of fungal-grain contacts revealed (i) a hypha-biofilm-basaltic glass interface coinciding with titanomagnetite inclusions exposed on the grain surface and embedded in the glass matrix and (ii) native dendritic and subhedral titanomagnetite inclusions in the upper 1–2 µm of the grain surface that spanned the length of the fungal-grain interface. We provide evidence of submicron basaltic glass dissolution occurring at a fungal-grain contact in a soil field setting. An example of how fungal-mediated weathering can be distinguished from abiotic mechanisms in the field was demonstrated by observing hyphal selective occupation and hydrolysis of glass-titanomagnetite surfaces. We hypothesize that the fungi were drawn to basaltic glass-titanomagnetite boundaries given that titanomagnetite exposed on or very near grain surfaces represents a source of iron to microbes. Furthermore, glass is energetically favorable to weathering in the presence of titanomagnetite. Our observations demonstrate that fungi interact with and transform basaltic substrates over a three-year time scale in field environments, which is central to understanding the rates and pathways of biogeochemical reactions related to nuclear waste disposal, geologic carbon storage, nutrient cycling, cultural artifact preservation, and soil-formation processes.
Journal Article
Tomographic mapping of the nanoscale water-filled pore structure in corroded borosilicate glass
by
Schreiber, Daniel K.
,
Vienna, John D.
,
Lu, Xiaonan
in
639/301/1023/218
,
639/301/1034/1035
,
639/301/930/2735
2020
Cryo-based atom probe tomography has been applied to directly reveal the water-solid interface and hydrated corrosion layers making up the nanoscale porous structure of a corroded borosilicate glass in its native aqueous environment. The analysis includes morphology and compositional mapping of the inner gel/glass interface, isolation of a tomographic sub-volume of the tortuous water-filled gel, and comparison of the gel structure with simulations. The nanoscale porous structure is qualitatively consistent with that of the molecular dynamics simulation, enabling in greater confidence in both interrogations. Comparison of the gel/glass interface between desiccated and cryogenically preserved samples reveals consistently abrupt B dissolution behavior and quantitative differences in the apparent H ingress into the glass. These comparisons give some guidance to future experimental approaches to understanding glass corrosion behavior. More broadly, the cryogenic preservation and 3D visualization of the native water/solid structure in 3D at the nanoscale has direct relevance to a wide range of materials systems beyond glass science.
Journal Article
Determining the location and nearest neighbours of aluminium in zeolites with atom probe tomography
by
Arslan, Ilke
,
Lercher, Johannes A.
,
Arey, Bruce W.
in
639/301/930/2735
,
639/638/440
,
639/638/77/887
2015
Zeolite catalysis is determined by a combination of pore architecture and Brønsted acidity. As Brønsted acid sites are formed by the substitution of AlO
4
for SiO
4
tetrahedra, it is of utmost importance to have information on the number as well as the location and neighbouring sites of framework aluminium. Unfortunately, such detailed information has not yet been obtained, mainly due to the lack of suitable characterization methods. Here we report, using the powerful atomic-scale analysis technique known as atom probe tomography, the quantitative spatial distribution of individual aluminium atoms, including their three-dimensional extent of segregation. Using a nearest-neighbour statistical analysis, we precisely determine the short-range distribution of aluminium over the different T-sites and determine the most probable Al–Al neighbouring distance within parent and steamed ZSM-5 crystals, as well as assess the long-range redistribution of aluminium upon zeolite steaming.
Substitution of framework silicon for aluminium in zeolites affects Brønsted acidity and subsequently catalytic activity. Here, the authors use atom probe tomography to obtain quantitative insights into the spatial distribution of individual aluminium atoms, including their distribution and segregation.
Journal Article
Direct measurement of dopant distribution in an individual vapour–liquid–solid nanowire
by
Voorhees, Peter W.
,
Hemesath, Eric R.
,
Schwalbach, Edwin J.
in
Catalysts
,
Chemistry and Materials Science
,
Composition
2009
Semiconductor nanowires show promise for many device applications
1
,
2
,
3
, but controlled doping with electronic and magnetic impurities remains an important challenge
4
,
5
,
6
,
7
,
8
. Limitations on dopant incorporation have been identified in nanocrystals
9
, raising concerns about the prospects for doping nanostructures
9
,
10
. Progress has been hindered by the lack of a method to quantify the dopant distribution in single nanostructures. Recently, we showed that atom probe tomography can be used to determine the composition of isolated nanowires
11
,
12
. Here, we report the first direct measurements of dopant concentrations in arbitrary regions of individual nanowires. We find that differences in precursor decomposition rates between the liquid catalyst and solid nanowire surface give rise to a heavily doped shell surrounding an underdoped core. We also present a thermodynamic model that relates liquid and solid compositions to dopant fluxes.
The first direct measurements of dopant concentrations in arbitrary regions of individual nanowires are reported. Decomposition rates of heterogeneous precursors cause a heavily doped shell to surround an underdoped core. A thermodynamic model relating liquid and solid compositions to dopant fluxes is also presented.
Journal Article
Nanometer-Scale Chemistry of a Calcite Biomineralization Template
by
Spero, Howard J.
,
Hönisch, Bärbel
,
Zhu, Zihua
in
Animal Shells - chemistry
,
Animal Shells - diagnostic imaging
,
Animal Shells - metabolism
2016
Plankton, corals, and other organisms produce calcium carbonate skeletons that are integral to their survival, form a key component of the global carbon cycle, and record an archive of past oceanographic conditions in their geochemistry. A key aspect of the formation of these biominerals is the interaction between organic templating structures and mineral precipitation processes. Laboratory-based studies have shown that these atomic-scale processes can profoundly influence the architecture and composition of minerals, but their importance in calcifying organisms is poorly understood because it is difficult to measure the chemistry of in vivo biomineral interfaces at spatially relevant scales. Understanding the role of templates in biomineral nucleation, and their importance in skeletal geochemistry requires an integrated, multiscale approach, which can place atom-scale observations of organic-mineral interfaces within a broader structural and geochemical context. Here we map the chemistry of an embedded organic template structure within a carbonate skeleton of the foraminifera Orbulina universa using both atom probe tomography (APT), a 3D chemical imaging technique with Ångström-level spatial resolution, and time-of-flight secondary ionization mass spectrometry (ToF-SIMS), a 2D chemical imaging technique with submicron resolution. We quantitatively link these observations, revealing that the organic template in O. universa is uniquely enriched in both Na and Mg, and contributes to intraskeletal chemical heterogeneity. Our APT analyses reveal the cation composition of the organic surface, offering evidence to suggest that cations other than Ca2+, previously considered passive spectator ions in biomineral templating, may be important in defining the energetics of carbonate nucleation on organic templates.
Journal Article