Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,816 result(s) for "Pereira, Daniela"
Sort by:
Insights into nanomedicine for head and neck cancer diagnosis and treatment
Head and neck cancers rank sixth among the most common cancers today, and the survival rate has remained virtually unchanged over the past 25 years, due to late diagnosis and ineffective treatments. They have two main risk factors, tobacco and alcohol, and human papillomavirus infection is a secondary risk factor. These cancers affect areas of the body that are fundamental for the five senses. Therefore, it is necessary to treat them effectively and non-invasively as early as possible, in order to do not compromise vital functions, which is not always possible with conventional treatments (chemotherapy or radiotherapy). In this sense, nanomedicine plays a key role in the treatment and diagnosis of head and neck cancers. Nanomedicine involves using nanocarriers to deliver drugs to sites of action and reducing the necessary doses and possible side effects. The main purpose of this review is to give an overview of the applications of nanocarrier systems to the diagnosis and treatment of head and neck cancer. Herein, several types of delivery strategies, radiation enhancement, inside-out hyperthermia, and theragnostic approaches are addressed.
Recent Advances in Bioactive Flavonoid Hybrids Linked by 1,2,3-Triazole Ring Obtained by Click Chemistry
As a result of the biological activities of natural flavonoids, several synthetic strategies aiming to obtain analogues with improved potency and/or pharmacokinetic profile have been developed. Since the triazole ring has been associated with several biological activities and metabolic stability, hybridization with a 1,2,3-triazole ring has been increasingly reported over the last years. The feasible synthesis through copper (I) catalyzed azide-alkyne cycloaddition (CuAAC) has allowed the accomplishment of several hybrids. Since 2017, almost 700 flavonoid hybrids conjugated with 1,2,3-triazole, including chalcones, flavones, flavanones and flavonols, among others, with antitumor, antimicrobial, antidiabetic, neuroprotective, anti-inflammatory, antioxidant, and antifouling activity have been reported. This review compiles the biological activities recently described for these hybrids, highlighting the mechanism of action and structure–activity relationship (SAR) studies.
Designing and building OSCEBot ® for virtual OSCE - Performance evaluation
With AI's advancing technology and chatbots becoming more intertwined in our daily lives, pedagogical challenges are occurring. While chatbots can be used in various disciplines, they play a particularly significant role in medical education. We present the development process of OSCEBot ®, a chatbot to train medical students in the clinical interview approach. The SentenceTransformers, or SBERT, framework was used to develop this chatbot. To enable semantic search for various phrases, SBERT uses siamese and triplet networks to build sentence embeddings for each sentence that can then be compared using a cosine-similarity. Three clinical cases were developed using symptoms that followed the SOCRATES approach. The optimal cutoffs were determined, and each case's performance metrics were calculated. Each question was divided into different categories based on their content. Regarding the performance between cases, case 3 presented higher average confidence values, explained by the continuous improvement of the cases following the feedback acquired after the sessions with the students. When evaluating performance between categories, it was found that the mean confidence values were highest for previous medical history. It is anticipated that the results can be improved upon since this study was conducted early in the chatbot deployment process. More clinical scenarios must be created to broaden the options available to students.
The Role of Pseudocereals in Celiac Disease: Reducing Nutritional Deficiencies to Improve Well-Being and Health
Celiac disease or gluten-dependent enteropathy is a chronic autoimmune pathology triggered by dietary gluten in genetic predisposed individuals, mediated by transglutaminase 2 IgA autoantibodies and associated with a deteriorating immune and inflammatory response. This leads to intestinal villous atrophy, impairing the intestinal mucosa structure and function of secretion, digestion, and absorption. The result is macro- and micronutrient deficiency, including fat soluble vitamins and minerals, and a consequent nutritional status depletion. A lifelong gluten-free diet is the only available treatment for celiac patients in order to assure normal intestinal mucosa and remission of gastrointestinal symptoms. However, a gluten-free diet can itself cause other nutritional deficiencies due to its restrictive nature regarding gluten-containing cereals. A group of gluten-free cereals, known as pseudocereals, is increasingly recognized as valuable options for gluten-free diets due to their high nutritional value. Amaranth, quinoa, millet, and buckwheat are examples of gluten-free nutrient-dense grains that can be used as alternatives to the conventional gluten-containing grains and improve the variety and nutritional quality of the celiac diet. Current work reviews the nutritional pitfalls of a gluten-free diet and analyses how pseudocereals can contribute to revert those deficiencies and optimize the nutritional value of this mandatory diet for the celiac population.
Functional MPO Polymorphisms and Haplotypes Affect Both Myeloperoxidase Levels and Association with Hypertensive Disorders of Pregnancy
Preeclampsia (PE) shares common pathophysiological mechanisms with cardiovascular diseases, including endothelial dysfunction and exacerbated inflammatory response. Myeloperoxidase (MPO) has been suggested as a biomarker for cardiovascular risk, and its circulating levels are contradictory in PE. Elevated levels of MPO can promote host tissue damage and trigger vascular injury. MPO gene polymorphisms affect circulating MPO levels under different conditions. To date, no studies have investigated whether MPO polymorphisms influence MPO levels in hypertensive disorders of pregnancy. In this study, we examined the impact of two specific MPO polymorphisms—rs2243828 and rs2071409—and their associated haplotypes on MPO levels. We also explored their potential association with gestational hypertension (GH) and preeclampsia (PE). Our study included 136 healthy pregnant women (HP), including 118 with GH and 140 with PE. Genotyping was performed using TaqMan allele discrimination assays, and MPO levels were quantified using an ELISA assay. The TT genotype of the rs2243828 polymorphism was associated with lower MPO concentration in GH, and the CC genotype presented a higher frequency in the GH group than the HP group. The AC+CC rs2071409 polymorphism was associated with lower MPO concentration in GH. We also found that the ‘C, C’ haplotype was less frequent and was associated with lower MPO concentration in PE. Our findings suggest that both rs2243828 and rs2071409 polymorphisms might contribute to MPO levels in GH and that the haplotype ‘C, C’ formed by them may protect against PE.
Development and Characterization of Pectin Films with Salicornia ramosissima: Biodegradation in Soil and Seawater
Pectin films were developed by incorporating a halophyte plant Salicornia ramosissima (dry powder from stem parts) to modify the film’s properties. The films’ physicomechanical properties, Fourier-transform infrared spectroscopy (FTIR), and microstructure, as well as their biodegradation capacity in soil and seawater, were evaluated. The inclusion of S. ramosissima significantly increased the thickness (0.25 ± 0.01 mm; control 0.18 ± 0.01 mm), color parameters a* (4.96 ± 0.30; control 3.29 ± 0.16) and b* (28.62 ± 0.51; control 12.74 ± 0.75), water vapor permeability (1.62 × 10−9 ± 1.09 × 10−10 (g/m·s·Pa); control 1.24 × 10−9 ± 6.58 × 10−11 (g/m·s·Pa)), water solubility (50.50 ± 5.00%; control 11.56 ± 5.56%), and elongation at break (5.89 ± 0.29%; control 3.91 ± 0.62%). On the other hand, L* (48.84 ± 1.60), tensile strength (0.13 ± 0.02 MPa), and Young’s modulus (0.01 ± 0 MPa) presented lower values compared with the control (L* 81.20 ± 1.60; 4.19 ± 0.82 MPa; 0.93 ± 0.12 MPa), while the moisture content varied between 30% and 45%, for the film with S. ramosissima and the control film, respectively. The addition of S. ramosissima led to opaque films with relatively heterogeneous microstructures. The films showed also good biodegradation capacity—after 21 days in soil (around 90%), and after 30 days in seawater (fully fragmented). These results show that pectin films with S. ramosissima may have great potential to be used in the future as an eco-friendly food packaging material.
Nrf2 positively regulates autophagy antioxidant response in human bronchial epithelial cells exposed to diesel exhaust particles
Diesel exhaust particles (DEP) are known to generate reactive oxygen species in the respiratory system, triggering cells to activate antioxidant defence mechanisms, such as Keap1-Nrf2 signalling and autophagy. The aim of this study was to investigate the relationship between the Keap1-Nrf2 signalling and autophagy pathways after DEP exposure. BEAS-2B cells were transfected with silencing RNA (siRNA) specific to Nrf2 and exposed to DEP. The relative levels of mRNA for Nrf2, NQO1, HO-1, LC3B, p62 and Atg5 were determined using RT-PCR, while the levels of LCB3, Nrf2, and p62 protein were determined using Western blotting. The autophagy inhibitor bafilomycin caused a significant decrease in the production of Nrf2, HO-1 and NQO1 compared to DEPs treatment, whereas the Nrf2 activator sulforaphane increased the LC3B (p = 0.020) levels. BEAS-2B cells exposed to DEP at a concentration of 50 μg/mL for 2 h showed a significant increase in the expression of LC3B (p = 0.001), p62 (p = 0.008), Nrf2 (p = 0.003), HO-1 (p = 0.001) and NQO1 (p = 0.015) genes compared to control. In siRNA-transfected cells, the LC3B (p < 0.001), p62 (p = 0.001) and Atg5 (p = 0.024) mRNA levels and the p62 and LC3II protein levels were decreased, indicating that Nrf2 modulated the expression of autophagy markers (R < 1). These results imply that, in bronchial cells exposed to DEP, the Nrf2 system positively regulates autophagy to maintain cellular homeostasis.
Feasibility indicators of telemedicine for patients with dementia in a public hospital in Northeast Brazil during the COVID-19 pandemic
The use of telemedicine has become a fundamental tool in healthcare in recent years, especially at times of Covid-19 pandemic. Currently, there are several telemedicine tools that are simple, inexpensive, and effective means of communication. This article aims to describe indicators of feasibility including patient recruitment, attendance, discomfort (internet connection issues and/or noncompliant patient behavior), satisfaction, and travel time and cost savings of virtual telemedicine consultations for patients with dementia. The study was conducted at the Geriatrics Department of Hospital Universitário Walter Cantídio (HUWC) in Fortaleza, Brazil, between May 1st and December 31, 2020. The eligibility criteria included previous diagnosis of dementia syndrome and receiving care at the hospital's dementia outpatient clinic in face-to-face consultations in the preceding 12 months. Patients were excluded if they did not feel comfortable with virtual consultations, did not have the required communication technology available or their caregiver was not available to attend the remote consultation. The patients were recruited from the outpatient dementia clinic's medical appointment scheduling list. The intervention was designed as a one-time consultation and it included treatment approaches and health promotion recommendations. Patient recruitment, attendance and discomfort rates were 85.5%, 97.7% and 9.4%, respectively. To attend face-to-face visits, they reported an average travel time (including the consultation) of 233.21 minutes and average total cost of 60.61 reais (around USD 11). The study intervention was well accepted among the patients and their caregivers with 97.6% being satisfied. Many were happy to avoid long waits in crowded medical waiting rooms and the risk of covid-19 contagion. We found good recruitment, attendance, and acceptance rates of remote care for the follow-up of dementia patients as well as low discomfort rates. Brazilian Trial Registry (REBEC) RBR-9xs978.
Gaps in the knowledge of thyroid hormones and placental biology
Thyroid hormones (THs) are required for the growth and development of the fetus, stimulating anabolism, and oxygen consumption from the early stages of pregnancy to the period of fetal differentiation close to delivery. Maternal changes in the hypothalamic–pituitary–thyroid axis are also well known. In contrast, several open questions remain regarding the relationships between the placenta and the maternal and fetal TH systems. The exact mechanism by which the placenta participates in regulating the TH concentration in the fetus and mother and the role of TH in the placenta are still poorly studied. In this review, we aim to summarize the available data in the area and highlight significant gaps in our understanding of the ontogeny and cell-specific localization of TH transporters, TH receptors, and TH metabolic enzymes in the placenta in both human and rodent models. Significant deficiencies also exist in the knowledge of the contribution of genomic and nongenomic effects of TH on the placenta and finally, how the placenta reacts during pregnancy when the mother has thyroid disease. By addressing these key knowledge gaps, improved pregnancy outcomes and management of women with thyroid alterations may be possible. Summary Sentence Thyroid hormone transport, action, and metabolism in the placenta have important roles in controlling fetal growth both developmentally and in response to suboptimal maternal environments. Graphical Abstract
Proof of Concept of Natural and Synthetic Antifouling Agents in Coatings
Marine biofouling, caused by the deposition and accumulation of marine organisms on submerged surfaces, represents a huge concern for the maritime industries and also contributes to environmental pollution and health concerns. The most effective way to prevent this phenomenon is the use of biocide-based coatings which have proven to cause serious damage to marine ecosystems. Several research groups have focused on the search for new environmentally friendly antifoulants, including marine and terrestrial natural products and synthetic analogues. Some of these compounds have been incorporated into marine coatings and display interesting antifouling activities caused by the interference with the biofilm-forming species as well as by the inhibition of the settlement of macroorganisms. This review highlights the proof-of-concept studies of emerging natural or synthetic antifouling compounds in coatings, from lab-made to commercial ones, performed between 2019 and 2023 and their results in the field or in in vivo laboratorial tests.