Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
22 result(s) for "Periñán, María Teresa"
Sort by:
Peripheral inflammatory immune response differs among sporadic and familial Parkinson’s disease
Peripheral inflammatory immune responses are thought to play a major role in the pathogenesis of Parkinson’s disease (PD). The neutrophil-to-lymphocyte ratio (NLR), a biomarker of systemic inflammation, has been reported to be higher in patients with PD than in healthy controls (HCs). The present study was aimed at determining if the peripheral inflammatory immune response could be influenced by the genetic background of patients with PD. We included a discovery cohort with 222 patients with PD (132 sporadic PD, 44 LRRK2 -associated PD (with p.G2019S and p.R1441G variants), and 46 GBA -associated PD), as well as 299 HCs. Demographic and clinical data were recorded. Leukocytes and their subpopulations, and the NLR were measured in peripheral blood. Multivariate lineal regression and post-hoc tests were applied to determine the differences among the groups. Subsequently, a replication study using the Parkinson’s Progression Markers Initiative cohort was performed which included 401 patients with PD (281 sPD patients, 66 LRRK2 -PD patients, 54 GBA -PD patients) and a group of 174 HCs. Patients with sporadic PD and GBA -associated PD showed a significantly lower lymphocyte count, a non-significantly higher neutrophil count and a significantly higher NLR than HCs. The peripheral inflammatory immune response of patients with LRRK2 -associated PD did not differ from HCs. Our study supports the involvement of a peripheral inflammatory immune response in the pathophysiology of sPD and GBA -associated PD. However, this inflammatory response was not found in LRRK2 -associated PD, probably reflecting different pathogenic inflammatory mechanisms.
TMEM230 in Parkinson’s disease in a southern Spanish population
TMEM230 has been associated with autosomal dominant Parkinson's disease (PD). Subsequent studies have remained negative, and none of previous described mutation has been reported anymore. We investigated the implication of this gene in the PD in a population of 703 PD patients and 695 unrelated healthy controls from southern Spain. Thirteen variants were found, twelve of them observed only in controls or in patients and controls, and one (c.190A>G) observed only in one patient. Subsequent analysis of this variant indicates that probably it is not pathogenic. In addition, we found a variation in the 3'-UTR (rs183551373) and related with the miRNA hsa-miR-4299 but it was observed only in healthy controls. Our results suggest that variants in TMEM230 gene are not associated with the development of PD.
Serum lipid profile among sporadic and familial forms of Parkinson’s disease
Brain cholesterol metabolism has been described as altered in Parkinson’s disease (PD) patients. Serum lipid levels have been widely studied in PD with controversial results among different populations and age groups. The present study is aimed at determining if the serum lipid profile could be influenced by the genetic background of PD patients. We included 403 PD patients (342 sporadic PD patients, 30 GBA-associated PD patients, and 31 LRRK2-associated PD patients) and 654 healthy controls (HCs). Total cholesterol, HDL, LDL, and triglycerides were measured in peripheral blood. Analysis of covariance adjusting for sex and age (ANCOVA) and post hoc tests were applied to determine the differences within lipid profiles among the groups. Multivariate ANCOVA revealed significant differences among the groups within cholesterol and LDL levels. GBA-associated PD patients had significantly lower levels of total cholesterol and LDL compared to LRRK2-associated PD patients and HCs. The different serum cholesterol levels in GBA-associated PD might be related to diverse pathogenic mechanisms. Our results support the hypothesis of lipid metabolism disruption as one of the main PD pathogenic mechanisms in patients with GBA-associated PD. Further studies would be necessary to explore their clinical implications.
Transcriptomic analysis reveals an association of FCGBP with Parkinson’s disease
Transcriptomics in Parkinson’s disease (PD) offers new insights into the molecular mechanism of PD pathogenesis. Several pathways, such as inflammation and protein degradation, have been identified by differential gene expression analysis. Our aim was to identify gene expression differences underlying the disease etiology and the discovery of pre-symptomatic risk biomarkers for PD from a multicenter study in the context of the PROPAG-AGEING project. We performed RNA sequencing from 47 patients with de novo PD, 10 centenarians, and 65 healthy controls. Using identified differentially expressed genes, functional annotations were assigned using gene ontology to unveil significant enriched biological processes. The expression of 16 selected genes was validated using OpenArray® assays and samples from independent cohorts of 201 patients with advanced PD, 340 healthy siblings of PD patients, and 177 healthy controls. Differential gene expression analysis identified higher FCGBP expression in patients with de novo PD compared with healthy controls and compared with centenarians. Furthermore, FCGBP showed no differences in terms of population origin or aging process. The increased FCGBP expression was validated in patients with advanced PD and their siblings. Thus, we provided evidence for an upregulation of FCGBP mRNA levels not only in patients with PD but also in individuals at putative higher risk of PD, suggesting that it could be important in gut–brain PD interaction, mediating the connection between microbiota and intestinal inflammatory processes, as well as neuroinflammation and neurodegeneration.
The IPDGC/GP2 Hackathon - an open science event for training in data science, genomics, and collaboration using Parkinson’s disease data
Open science and collaboration are necessary to facilitate the advancement of Parkinson’s disease (PD) research. Hackathons are collaborative events that bring together people with different skill sets and backgrounds to generate resources and creative solutions to problems. These events can be used as training and networking opportunities, thus we coordinated a virtual 3-day hackathon event, during which 49 early-career scientists from 12 countries built tools and pipelines with a focus on PD. Resources were created with the goal of helping scientists accelerate their own research by having access to the necessary code and tools. Each team was allocated one of nine different projects, each with a different goal. These included developing post-genome-wide association studies (GWAS) analysis pipelines, downstream analysis of genetic variation pipelines, and various visualization tools. Hackathons are a valuable approach to inspire creative thinking, supplement training in data science, and foster collaborative scientific relationships, which are foundational practices for early-career researchers. The resources generated can be used to accelerate research on the genetics of PD.
A genetic analysis of a Spanish population with early onset Parkinson’s disease
Both recessive and dominant genetic forms of Parkinson's disease have been described. The aim of this study was to assess the contribution of several genes to the pathophysiology of early onset Parkinson's disease in a cohort from central Spain. We analyzed a cohort of 117 unrelated patients with early onset Parkinson's disease using a pipeline, based on a combination of a next-generation sequencing panel of 17 genes previously related with Parkinson's disease and other Parkinsonisms and CNV screening. Twenty-six patients (22.22%) carried likely pathogenic variants in PARK2, LRRK2, PINK1, or GBA. The gene most frequently mutated was PARK2, and p.Asn52Metfs*29 was the most common variation in this gene. Pathogenic variants were not observed in genes SNCA, FBXO7, PARK7, HTRA2, DNAJC6, PLA2G6, and UCHL1. Co-occurrence of pathogenic variants involving two genes was observed in ATP13A2 and PARK2 genes, as well as LRRK2 and GIGYF2 genes. Our results contribute to the understanding of the genetic architecture associated with early onset Parkinson's disease, showing both PARK2 and LRRK2 play an important role in Spanish Parkinson's disease patients. Rare variants in ATP13A2 and GIGYF2 may contribute to PD risk. However, a large proportion of genetic components remains unknown. This study might contribute to genetic diagnosis and counseling for families with early onset Parkinson's disease.
Understanding Parkinson disease in Spain: Genetic and clinical insights
Background and purpose Parkinson disease (PD) is a complex and heterogeneous neurodegenerative disorder with a broad spectrum of clinical manifestations, determined by a complex interplay of environmental and genetic factors. This study aimed to investigate genetic variants associated with PD and assess their impact on the disease phenotype through genotype–phenotype correlations. Methods We employed a targeted resequencing panel to analyze 27 genes linked to PD in a cohort of 1185 PD patients from southern Spain. Variants were categorized based on the American College of Medical Genetics and Genomics pathogenicity criteria. Demographic and clinical data were also collected. Results Among the patients analyzed, 13.5% carried potential disease‐causing pathogenic or likely pathogenic variants in 12 different genes, indicating significant genetic heterogeneity. The most frequently affected genes were LRRK2, PRKN, and GBA1 (accounting for 72.1% of positive cases). Sex‐specific differences were observed, with a higher proportion of female patients carrying LRRK2 variants. Differences in age at onset and clinical features were also observed among the different mutated genes. Notably, variants in genes associated with atypical parkinsonism presented distinct clinical presentations, highlighting the importance of genetic factors in the differential diagnosis. Conclusions Our study provides valuable information on the genetic landscape of PD and its clinical manifestations. The observed genotype–phenotype correlations, along with sex‐specific differences, emphasize the complexity of PD pathogenesis, underlining the importance of personalized approaches to PD diagnosis and treatment. Further investigations into genetic interactions and population‐specific effects are warranted to enhance our understanding of PD etiology and improve patient care.
Early downregulation of hsa-miR-144-3p in serum from drug-naïve Parkinson’s disease patients
Advanced age represents one of the major risk factors for Parkinson’s Disease. Recent biomedical studies posit a role for microRNAs, also known to be remodelled during ageing. However, the relationship between microRNA remodelling and ageing in Parkinson’s Disease, has not been fully elucidated. Therefore, the aim of the present study is to unravel the relevance of microRNAs as biomarkers of Parkinson’s Disease within the ageing framework. We employed Next Generation Sequencing to profile serum microRNAs from samples informative for Parkinson’s Disease (recently diagnosed, drug-naïve) and healthy ageing (centenarians) plus healthy controls, age-matched with Parkinson’s Disease patients. Potential microRNA candidates markers, emerging from the combination of differential expression and network analyses, were further validated in an independent cohort including both drug-naïve and advanced Parkinson’s Disease patients, and healthy siblings of Parkinson’s Disease patients at higher genetic risk for developing the disease. While we did not find evidences of microRNAs co-regulated in Parkinson’s Disease and ageing, we report that hsa-miR-144-3p is consistently down-regulated in early Parkinson’s Disease patients. Moreover, interestingly, functional analysis revealed that hsa-miR-144-3p is involved in the regulation of coagulation, a process known to be altered in Parkinson’s Disease. Our results consistently show the down-regulation of hsa-mir144-3p in early Parkinson’s Disease, robustly confirmed across a variety of analytical and experimental analyses. These promising results ask for further research to unveil the functional details of the involvement of hsa-mir144-3p in Parkinson’s Disease.