Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
82 result(s) for "Perin, E C"
Sort by:
Safety and efficacy of plasmid DNA expressing two isoforms of hepatocyte growth factor in patients with critical limb ischemia
VM202, a plasmid DNA that expresses two isoforms of hepatocyte growth factor, may elicit angiogenic effects that could benefit patients with critical limb ischemia (CLI). In a phase 2, double-blind trial in 52 CLI patients, we examined the safety and potential efficacy of intramuscular injections of low-dose ( n =21) or high-dose ( n =20) VM202 or placebo ( n =11) in the affected limb (days 0, 14, 28 and 42). Adverse events and serious adverse events were similar among the groups; no malignancy or proliferative retinopathy was seen. In exploratory efficacy analyses, we found no differences in ankle or toe-brachial index, VAS, VascuQuol or amputation rate among the groups. Complete ulcer healing was significantly better in high-dose (8/13 ulcers; P <0.01) versus placebo (1/9) patients. Clinically meaningful reductions (>50%) in ulcer area occurred in high-dose (9/13 ulcers) and low-dose (19/27) groups versus placebo (1/9; P <0.05 and P <0.005, respectively). At 12 months, significant differences were seen in TcPO 2 between the high-dose and placebo groups (47.5±17.8 versus 36.6±24.0 mm Hg, respectively; P <0.05) and in the change from baseline among the groups ( P <0.05). These data suggest that VM202 is safe and may provide therapeutic bioactivity in CLI patients.
Adipose-derived regenerative cells in patients with ischemic cardiomyopathy: The PRECISE Trial
Adipose-derived regenerative cells (ADRCs) can be isolated from liposuction aspirates and prepared as fresh cells for immediate administration in cell therapy. We performed the first randomized, placebo-controlled, double-blind trial to examine the safety and feasibility of the transendocardial injections of ADRCs in no-option patients with ischemic cardiomyopathy. Procedural, postoperative, and follow-up safety end points were monitored up to 36 months. After baseline measurements, efficacy was assessed by echocardiography and single-photon emission computed tomography (6, 12, and 18 months), metabolic equivalents and maximal oxygen consumption (MVO2) (6 and 18 months), and cardiac magnetic resonance imaging (6 months). We enrolled 21 ADRC-treated and 6 control patients. Liposuction was well tolerated, ADRCs were successfully prepared, and transendocardial injections were feasible in all patients. No malignant arrhythmias were seen. Adverse events were similar between groups. Metabolic equivalents and MVO2 values were preserved over time in ADRC-treated patients but declined significantly in the control group. The difference in the change in MVO2 from baseline to 6 and 18 months was significantly better in ADRC-treated patients compared with controls. The ADRC-treated patients showed significant improvements in total left ventricular mass by magnetic resonance imaging and wall motion score index. Single-photon emission computed tomography results suggested a reduction in inducible ischemia in ADRC-treated patients up to 18 months. Isolation and transendocardial injection of autologous ADRCs in no-option patients were safe and feasible. Our results suggest that ADRCs may preserve ventricular function, myocardial perfusion, and exercise capacity in these patients.
A randomized study of transendocardial injection of autologous bone marrow mononuclear cells and cell function analysis in ischemic heart failure (FOCUS-HF)
Autologous bone marrow mononuclear cell (ABMMNC) therapy has shown promise in patients with heart failure (HF). Cell function analysis may be important in interpreting trial results. In this prospective study, we evaluated the safety and efficacy of the transendocardial delivery of ABMMNCs in no-option patients with chronic HF. Efficacy was assessed by maximal myocardial oxygen consumption, single photon emission computed tomography, 2-dimensional echocardiography, and quality-of-life assessment (Minnesota Living with Heart Failure and Short Form 36). We also characterized patients' bone marrow cells by flow cytometry, colony-forming unit, and proliferative assays. Cell-treated (n = 20) and control patients (n = 10) were similar at baseline. The procedure was safe; adverse events were similar in both groups. Canadian Cardiovascular Society angina score improved significantly (P = .001) in cell-treated patients, but function was not affected. Quality-of-life scores improved significantly at 6 months (P = .009 Minnesota Living with Heart Failure and P = .002 physical component of Short Form 36) over baseline in cell-treated but not control patients. Single photon emission computed tomography data suggested a trend toward improved perfusion in cell-treated patients. The proportion of fixed defects significantly increased in control (P = .02) but not in treated patients (P = .16). Function of patients' bone marrow mononuclear cells was severely impaired. Stratifying cell results by age showed that younger patients (≤60 years) had significantly more mesenchymal progenitor cells (colony-forming unit fibroblasts) than patients >60 years (20.16 ± 14.6 vs 10.92 ± 7.8, P = .04). Furthermore, cell-treated younger patients had significantly improved maximal myocardial oxygen consumption (15 ± 5.8, 18.6 ± 2.7, and 17 ± 3.7 mL/kg per minute at baseline, 3 months, and 6 months, respectively) compared with similarly aged control patients (14.3 ± 2.5, 13.7 ± 3.7, and 14.6 ± 4.7 mL/kg per minute, P = .04). ABMMNC therapy is safe and improves symptoms, quality of life, and possibly perfusion in patients with chronic HF.
Randomized, double-blind pilot study of transendocardial injection of autologous aldehyde dehydrogenase–bright stem cells in patients with ischemic heart failure
The optimal type of stem cell for use in patients with ischemic heart disease has not been determined. A primitive population of bone marrow–derived hematopoietic cells has been isolated by the presence of the enzyme aldehyde dehydrogenase and comprises a multilineage mix of stem and progenitor cells. Aldehyde dehydrogenase–bright (ALDHbr) cells have shown promise in promoting angiogenesis and providing perfusion benefits in preclinical ischemia studies. We hypothesize that ALDHbr cells may be beneficial in treating ischemic heart disease and thus conducted the first randomized, controlled, double-blind study to assess the safety of the transendocardial injection of autologous ALDHbr cells isolated from the bone marrow in patients with advanced ischemic heart failure. Aldehyde dehydrogenase–bright cells were isolated from patients' bone marrow on the basis of the expression of a functional (aldehyde dehydrogenase) marker. We enrolled 20 patients (treatment, n = 10; control, n = 10). Safety (primary end point) and efficacy (secondary end point) were assessed at 6 months. No major adverse cardiovascular or cerebrovascular events occurred in ALDHbr-treated patients in the periprocedural period (up to 1 month); electromechanical mapping–related ventricular tachycardia (n = 2) and fibrillation (n = 1) occurred in control patients. Aldehyde dehydrogenase–bright–treated patients showed a significant decrease in left ventricular end-systolic volume at 6 months (P = .04) and a trend toward improved maximal oxygen consumption. The single photon emission computed tomography delta analysis showed a trend toward significant improvement in reversibility in cell-treated patients (P = .053). We provide preliminary evidence that treatment with the novel cell population, ALDHbr cells, is safe and may provide perfusion and functional benefits in patients with chronic myocardial ischemia.
Rationale and Design of the SENECA (StEm cell iNjECtion in cAncer survivors) Trial
SENECA (StEm cell iNjECtion in cAncer survivors) is a phase I, randomized, double-blind, placebo-controlled study to evaluate the safety and feasibility of delivering allogeneic mesenchymal stromal cells (allo-MSCs) transendocardially in subjects with anthracycline-induced cardiomyopathy (AIC). AIC is an incurable and often fatal syndrome, with a prognosis worse than that of ischemic or nonischemic cardiomyopathy. Recently, cell therapy with MSCs has emerged as a promising new approach to repair damaged myocardium. The study population is 36 cancer survivors with a diagnosis of AIC, left ventricular (LV) ejection fraction ≤40%, and symptoms of heart failure (NYHA class II-III) on optimally-tolerated medical therapy. Subjects must be clinically free of cancer for at least two years with a ≤ 30% estimated five-year risk of recurrence. The first six subjects participated in an open-label, lead-in phase and received 100 million allo-MSCs; the remaining 30 will be randomized 1:1 to receive allo-MSCs or vehicle via 20 transendocardial injections. Efficacy measures (obtained at baseline, 6 months, and 12 months) include MRI evaluation of LV function, LV volumes, fibrosis, and scar burden; assessment of exercise tolerance (six-minute walk test) and quality of life (Minnesota Living with Heart Failure Questionnaire); clinical outcomes (MACE and cumulative days alive and out of hospital); and biomarkers of heart failure (NT-proBNP). This is the first clinical trial using direct cardiac injection of cells for the treatment of AIC. If administration of allo-MSCs is found feasible and safe, SENECA will pave the way for larger phase II/III studies with therapeutic efficacy as the primary outcome.
Baseline assessment and comparison of arterial anatomy, hyperemic flow, and skeletal muscle perfusion in peripheral artery disease: The Cardiovascular Cell Therapy Research Network “Patients with Intermittent Claudication Injected with ALDH Bright Cells” (CCTRN PACE) study
Peripheral artery disease (PAD) is important to public health as a major contributor to cardiovascular morbidity and mortality. Recent developments in magnetic resonance imaging (MRI) techniques permit improved assessment of PAD anatomy and physiology, and may serve as surrogate end points after proangiogenic therapies. The PACE study is a randomized, double-blind, placebo-controlled clinical trial designed to assess the physiologic impact and potential clinical efficacy of autologous bone marrow–derived ALDHbr stem cells. The primary MRI end points of the study are as follows: (1) total collateral count, (2) calf muscle plasma volume (a measure of capillary perfusion) by dynamic contrast-enhanced MRI, and (3) peak hyperemic popliteal flow by phase-contrast MRI (PC-MRI). The interreader and intrareader and test-retest results demonstrated good-to-excellent reproducibility (interclass correlation coefficient range 0.61-0.98) for all magnetic resonance measures. The PAD participants (n=82) had lower capillary perfusion measured by calf muscle plasma volume (3.8% vs 5.6%) and peak hyperemic popliteal flow (4.1 vs 13.5mL/s) as compared with the healthy participants (n=16), with a significant level of collateralization. Reproducibility of the MRI primary end points in PACE was very good to excellent. The PAD participants exhibited decreased calf muscle capillary perfusion as well as arterial flow reserve when compared with healthy participants. The MRI tools used in PACE may advance PAD science by enabling accurate measurement of PAD microvascular anatomy and perfusion before and after stem cell or other PAD therapies.
Rationale and Design for PACE: Patients with Intermittent Claudication Injected with ALDH Bright Cells
Peripheral artery disease (PAD) is recognized as a public health issue because of its prevalence, functional limitations, and increased risk of systemic ischemic events. Current treatments for claudication, the primary symptom in patients with PAD, have limitations. Cells identified using cytosolic enzyme aldehyde dehydrogenase (ALDH) may benefit patients with severe PAD but has not been studied in patients with claudication. PACE is a randomized, double-blind, placebo-controlled clinical trial conducted by the Cardiovascular Cell Therapy Research Network to assess the safety and efficacy of autologous bone marrow–derived ALDHbr cells delivered by direct intramuscular injections in 80 patients with symptom-limiting intermittent claudication. Eligible patients will have a significant stenosis or occlusion of infrainguinal arteries and a resting ankle-brachial index less than 0.90 and will be randomized 1:1 to cell or placebo treatment with a 1-year follow-up. The primary end points are the change in peak walking time and leg collateral arterial anatomy, calf muscle blood flow, and tissue perfusion as determined by magnetic resonance imaging at 6 months compared with baseline. The latter 3 measurements are new physiologic lower extremity tissue perfusion and PAD imaging–based end points that may help to quantify the biologic and mechanistic effects of cell therapy. This trial will collect important mechanistic and clinical information on the safety and efficacy of ALDHbr cells in patients with claudication and provide valuable insight into the utility of advanced magnetic resonance imaging end points.
Rationale and design for TIME: A phase II, randomized, double-blind, placebo-controlled pilot trial evaluating the safety and effect of timing of administration of bone marrow mononuclear cells after acute myocardial infarction
Several previous studies have demonstrated that administration of autologous bone marrow–derived mononuclear cells (BMMNCs) improves cardiac function in patients after acute myocardial infarction (AMI). However, optimum timing of administration has not been investigated in a clinical trial. The Cardiovascular Cell Therapy Research Network was developed and funded by the National Heart, Lung, and Blood Institute to address important questions such as timing of cell delivery and to accelerate research in the use of cell-based therapies. The TIME trial is a randomized, phase II, double-blind, placebo-controlled clinical trial. The 5 member clinical sites of the Cardiovascular Cell Therapy Research Network will enroll 120 eligible patients with moderate-to-large anterior AMIs who have undergone successful percutaneous coronary intervention of the left anterior descending coronary artery and have a left ventricular (LV) ejection fraction ≤45% by echocardiography. Participants will have bone marrow aspirations and intracoronary infusions of 150 × 10 6 BMMNCs or placebo on day 3 or day 7 post-AMI. Objectives of this study are (1) to evaluate effects of BMMNCs on regional and global LV function compared to placebo therapy in patients with acute AMI as assessed by cardiac magnetic resonance imaging at 6 months and (2) to assess whether effects of BMMNC infusion on global and regional LV function and safety are influenced by the time of administration. This study will provide further insight into the clinical feasibility and appropriate timing of autologous BMMNC therapy in high-risk patients after AMI and percutaneous coronary intervention.
Erratum: Safety and efficacy of plasmid DNA expressing two isoforms of hepatocyte growth factor in patients with critical limb ischemia
Correction to: Gene Therapy advance online publication 14 January 2016; doi:10.1038/gt.2015.110 Following the online publication for this article, the authors noted that the funding information provided was incomplete. The full correct funding statement should appear as follows: Funded by ViroMed Co., Ltd, Seoul, Korea, and Reyon Pharmaceutical Co.