Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
12
result(s) for
"Perlaky, Laszlo"
Sort by:
Epigenetic Alterations of Repeated Relapses in Patient-matched Childhood Ependymomas
2022
Recurrence is frequent in pediatric ependymoma (EPN). Our longitudinal integrated analysis of 30 patient-matched repeated relapses (3.67 ± 1.76 times) over 13 years (5.8 ± 3.8) reveals stable molecular subtypes (RELA and PFA) and convergent DNA methylation reprogramming during serial relapses accompanied by increased orthotopic patient derived xenograft (PDX) (13/27) formation in the late recurrences. A set of differentially methylated CpGs (DMCs) and DNA methylation regions (DMRs) are found to persist in primary and relapse tumors (potential driver DMCs) and are acquired exclusively in the relapses (potential booster DMCs). Integrating with RNAseq reveals differentially expressed genes regulated by potential driver DMRs (
CACNA1H, SLC12A7, RARA
in RELA and
HSPB8, GMPR, ITGB4
in PFA) and potential booster DMRs (
PLEKHG1
in RELA and
NOTCH, EPHA2, SUFU, FOXJ1
in PFA tumors). DMCs predicators of relapse are also identified in the primary tumors. This study provides a high-resolution epigenetic roadmap of serial EPN relapses and 13 orthotopic PDX models to facilitate biological and preclinical studies.
While recurrence is frequent in ependymoma, the underlying molecular mechanisms remain to be explored. Here, the authors investigate epigenetic, genetic and tumorigenic changes in 30 patient-matched repeated relapses over 13 years and identify distinct patterns of DNA methylation.
Journal Article
Spatial Dissection of Invasive Front from Tumor Mass Enables Discovery of Novel microRNA Drivers of Glioblastoma Invasion
by
Zhang, Huiyuan
,
Chintagumpala, Murali
,
Man, Tsz‐Kwong
in
4‐aminopyridine
,
Animals
,
Antibodies
2021
Diffuse invasion is the primary cause of treatment failure of glioblastoma (GBM). Previous studies on GBM invasion have long been forced to use the resected tumor mass cells. Here, a strategy to reliably isolate matching pairs of invasive (GBMINV) and tumor core (GBMTC) cells from the brains of 6 highly invasive patient‐derived orthotopic models is described. Direct comparison of these GBMINV and GBMTC cells reveals a significantly elevated invasion capacity in GBMINV cells, detects 23/768 miRNAs over‐expressed in the GBMINV cells (miRNAINV) and 22/768 in the GBMTC cells (miRNATC), respectively. Silencing the top 3 miRNAsINV (miR‐126, miR‐369‐5p, miR‐487b) successfully blocks invasion of GBMINV cells in vitro and in mouse brains. Integrated analysis with mRNA expression identifies miRNAINV target genes and discovers KCNA1 as the sole common computational target gene of which 3 inhibitors significantly suppress invasion in vitro. Furthermore, in vivo treatment with 4‐aminopyridine (4‐AP) effectively eliminates GBM invasion and significantly prolongs animal survival times (P = 0.035). The results highlight the power of spatial dissection of functionally accurate GBMINV and GBMTC cells in identifying novel drivers of GBM invasion and provide strong rationale to support the use of biologically accurate starting materials in understanding cancer invasion and metastasis. Using 6 highly invasive glioblastoma (GBM) PDOX models, this study isolates matching pairs of invasive (GBMINV) and tumor core (GBMTC) cells, demonstrates an elevated invasion capacity in GBMINV cells, identifies a novel miRNA signature (miRNAINV) of GBM invasion, and discovers a commonly shared gene, KCNA1, from miRNAINV regulated genes that can be pharmacologically inhibited to block GBM invasion in vivo.
Journal Article
Tumorspheres but Not Adherent Cells Derived from Retinoblastoma Tumors Are of Malignant Origin
by
Bond, Wesley S.
,
Hurwitz, Richard L.
,
Perlaky, Laszlo
in
Adherent cells
,
Animal models
,
Biology
2013
Verification that cell lines used for cancer research are derived from malignant cells in primary tumors is imperative to avoid invalidation of study results. Retinoblastoma is a childhood ocular tumor that develops from loss of functional retinoblastoma protein (pRb) as a result of genetic or epigenetic changes that affect both alleles of the RB1 gene. These patients contain unique identifiable genetic signatures specifically present in malignant cells. Primary cultures derived from retinoblastoma tumors can be established as non-adherent tumorspheres when grown in defined media or as attached monolayers when grown in serum-containing media. While the RB1 genotypes of tumorspheres match those of the primary tumor, adherent cultures have the germline RB1 genotype. Tumorspheres derived from pRb-negative tumors do not express pRb and express the neuroendocrine tumor markers synaptophysin and microtubule-associated protein 2 (MAP2). Adherent cells are synaptophysin-negative and express pRb, the epithelial cell marker cytokeratin that is expressed in the retinal pigmented epithelium and the vascular endothelial cell marker CD34. While tumorspheres are of malignant origin, our results cast doubt on the assumption that adherent tumor-derived cultures are always valid in vitro models of malignant cells and emphasize the need for validation of primary tumor cultures.
Journal Article
Preservation of KIT genotype in a novel pair of patient-derived orthotopic xenograft mouse models of metastatic pediatric CNS germinoma
by
Zhang, Huiyuan
,
Chintagumpala, Murali
,
Qi, Lin
in
Adolescent
,
Animals
,
Biomarkers, Tumor - metabolism
2016
Metastatic intracranial germinoma is difficult to treat. Although the proto-oncogene
KIT
is recognized as one of the most frequent genetic abnormalities in CNS germinoma, the development of new target therapeutic agents for CNS germinoma is hampered by the lack of clinically-relevant animal models that replicate the mutated or over-expressed KIT. CNS germinoma tumor cells from five pediatric patients were directly implanted into the brains of Rag2/severe combined immune deficiency mice. Once established, the xenograft tumors were sub-transplanted in vivo in mouse brains. Characterization of xenograft tumors were performed through histologic and immunohistochemical staining, and KIT mutation analysed with quantitative pyro-sequencing. Expression of putative cancer stem cell markers (CD133, CD15, CD24, CD44, CD49f) was analyzed through flow cytometry. Two patient-derived orthotopic xenograft (PDOX) models (IC-6999GCT and IC-9302GCT) were established from metastatic germinoma and serially sub-transplanted five times in mouse brains. Similar to the original patient tumors, they both exhibited faint expression (+) of PLAP, no expression (−) of β-HCG and strong (+++) expression of KIT.
KIT
mutation (D816H), however, was only found in IC-9320GCT. This mutation was maintained during the five in vivo tumor passages with an increased mutant allele frequency compared to the patient tumor. Expression of putative cancer stem cell markers CD49f and CD15 was also detected in a small population of tumor cells in both models. This new pair of PDOX models replicated the key biological features of pediatric intracranial germinoma and should facilitate the biological and pre-clinical studies for metastatic intracranial germinomas.
Journal Article
Crosstalk between Medulloblastoma Cells and Endothelium Triggers a Strong Chemotactic Signal Recruiting T Lymphocytes to the Tumor Microenvironment
by
Metelitsa, Leonid S.
,
Kadikoy, Huseyin
,
Heslop, Helen E.
in
Animals
,
Blood-brain barrier
,
Brain
2011
Cancer cells can live and grow if they succeed in creating a favorable niche that often includes elements from the immune system. While T lymphocytes play an important role in the host response to tumor growth, the mechanism of their trafficking to the tumor remains poorly understood. We show here that T lymphocytes consistently infiltrate the primary brain cancer, medulloblastoma. We demonstrate, both in vitro and in vivo, that these T lymphocytes are attracted to tumor deposits only after the tumor cells have interacted with tumor vascular endothelium. Macrophage Migration Inhibitory Factor (MIF)\" is the key chemokine molecule secreted by tumor cells which induces the tumor vascular endothelial cells to secrete the potent T lymphocyte attractant \"Regulated upon Activation, Normal T-cell Expressed, and Secreted (RANTES).\" This in turn creates a chemotactic gradient for RANTES-receptor bearing T lymphocytes. Manipulation of this pathway could have important therapeutic implications.
Journal Article
Immunotherapy for Osteosarcoma: Genetic Modification of T cells Overcomes Low Levels of Tumor Antigen Expression
2009
Human epidermal growth factor receptor 2 (HER2) is expressed by the majority of human osteosarcomas and is a risk factor for poor outcome. Unlike breast cancer, osteosarcoma cells express HER2 at too low, a level for patients to benefit from HER2 monoclonal antibodies. We reasoned that this limitation might be overcome by genetically modifying T cells with HER2-specific chimeric antigen receptors (CARs), because even a low frequency of receptor engagement could be sufficient to induce effector cell killing of the tumor. HER2-specific T cells were generated by retroviral transduction with a HER2-specific CAR containing a CD28.ζ signaling domain. HER2-specific T cells recognized HER2-positive osteosarcoma cells as judged by their ability to proliferate, produce immunostimulatory T helper 1 cytokines, and kill HER2-positive osteosarcoma cell lines in vitro. The adoptive transfer of HER2-specific T cells caused regression of established osteosarcoma xenografts in locoregional as well as metastatic mouse models. In contrast, delivery of nontransduced (NT) T cells did not change the tumor growth pattern. Genetic modification of T cells with CARs specific for target antigens, expressed at too low a level to be effectively recognized by monoclonal antibodies, may allow immunotherapy to be more broadly applicable for human cancer therapy.
Journal Article
Direct Implantation of Patient Brain Tumor Cells into Matching Locations in Mouse Brains for Patient-Derived Orthotopic Xenograft Model Development
2024
Background: Despite multimodality therapies, the prognosis of patients with malignant brain tumors remains extremely poor. One of the major obstacles that hinders development of effective therapies is the limited availability of clinically relevant and biologically accurate (CRBA) mouse models. Methods: We have developed a freehand surgical technique that allows for rapid and safe injection of fresh human brain tumor specimens directly into the matching locations (cerebrum, cerebellum, or brainstem) in the brains of SCID mice. Results: Using this technique, we successfully developed 188 PDOX models from 408 brain tumor patient samples (both high-and low-grade) with a success rate of 72.3% in high-grade glioma, 64.2% in medulloblastoma, 50% in ATRT, 33.8% in ependymoma, and 11.6% in low-grade gliomas. Detailed characterization confirmed their replication of the histopathological and genetic abnormalities of the original patient tumors. Conclusions: The protocol is easy to follow, without a sterotactic frame, in order to generate large cohorts of tumor-bearing mice to meet the needs of biological studies and preclinical drug testing.
Journal Article
Biocompatibility of reduced graphene oxide nanoscaffolds following acute spinal cord injury in rats
by
Palejwala, AliH
,
Jea, Andrew
,
Samuel, ErrolL. G.
in
Biocompatibility
,
Composite materials
,
Cysts
2016
Background: Graphene has unique electrical, physical, and chemical properties that may have great potential as a bioscaffold for neuronal regeneration after spinal cord injury. These nanoscaffolds have previously been shown to be biocompatible in vitro; in the present study, we wished to evaluate its biocompatibility in an in vivo spinal cord injury model. Methods: Graphene nanoscaffolds were prepared by the mild chemical reduction of graphene oxide. Twenty Wistar rats (19 male and 1 female) underwent hemispinal cord transection at approximately the T2 level. To bridge the lesion, graphene nanoscaffolds with a hydrogel were implanted immediately after spinal cord transection. Control animals were treated with hydrogel matrix alone. Histologic evaluation was performed 3 months after the spinal cord transection to assess in vivo biocompatibility of graphene and to measure the ingrowth of tissue elements adjacent to the graphene nanoscaffold. Results: The graphene nanoscaffolds adhered well to the spinal cord tissue. There was no area of pseudocyst around the scaffolds suggestive of cytotoxicity. Instead, histological evaluation showed an ingrowth of connective tissue elements, blood vessels, neurofilaments, and Schwann cells around the graphene nanoscaffolds. Conclusions: Graphene is a nanomaterial that is biocompatible with neurons and may have significant biomedical application. It may provide a scaffold for the ingrowth of regenerating axons after spinal cord injury.
Journal Article
766. Immunotherapy for Her2-Positive Medulloblastoma: Regression of Experimental Tumors by Transfer of Her2-Redirected T Cells In Vivo
by
Ratnayake, Maheshika K.
,
Wels, Winfried
,
Bhattacharjee, Meenakshi B.
in
Antigens
,
Cancer
,
Drug dosages
2006
Background: The long-term objective of this project is to develop an innovative HER2-targeted immunotherapeutic approach for medulloblastoma. HER2 is expressed in 40% of medulloblastomas and at present less than one third of patients with HER2-positive tumors are cured by conventional therapies. The aim of this study was to determine if T cells grafted with a HER2-specific chimeric antigen receptor (CAR) recognize and kill HER2-positive medulloblastomas.Methods: Mitogen-activated T cells from healthy donors and medulloblastoma patients were transduced with a RD114 pseudotyped retroviral vector encoding a HER2-specific CAR with a ζ-signaling domain (HER2T-cells). We analyzed the ability of HER2T-cells to 1) proliferate, 2) produce immunostimulatory cytokines (IFN-γ and IL-2), and 3) kill HER2-positive targets in cytoxicity assays upon exposure to HER2-positive primary medulloblastoma cells and cell lines. The in vivo function was tested in an orthotopic murine xenograft model of human medulloblastoma, which allows for serial imaging by bioluminescence.Results: HER2T-cells killed both HER2-positive primary medulloblastoma cells and cell lines in cytotoxicity assays, whereas HER2-negative tumor cells were not killed. Stimulation of HER2T-cells resulted in T-cell proliferation and secretion of IFN-γ and IL-2 in a HER2-dependent manner. No functional difference was observed between cells generated from medulloblastoma patients receiving dexamethasone and healthy donors. In vivo, the adoptive transfer of HER2T-cells resulted in sustained regression of established medulloblastomas and a survival advantage in treated animals. In contrast, delivery of non-transduced T cells did not alter tumor growth.Conclusions: This study shows for the first time that HER2 is a target antigen for the immunotherapy of medulloblastoma. HER2-redirected T-cells not only recognized and killed HER2-positive medulloblastomas ex vivo, but also induced regression of experimental medulloblastoma in vivo. Hence, adoptive transfer of HER2-redirected T-cells may represent a promising immunotherapeutic approach for medulloblastoma.
Journal Article