Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
4
result(s) for
"Perobelli, Juliana E"
Sort by:
Diet-induced obesity in rats leads to a decrease in sperm motility
by
Fernandes, Glaura SA
,
Favareto, Ana Paula A
,
Fernandez, Carla DB
in
Animals
,
Complications and side effects
,
Diet
2011
Background
Obesity is rapidly becoming a worldwide epidemic that affects children and adults. Some studies have shown a relationship between obesity and infertility, but until now it remains controversial. Thus, the aim of the present study was to investigate the effect of high-fat diet-induced obesity on male reproductive parameters.
Methods
In a first experiment, male Wistar rats were fed a high-fat diet (HFD) or standard chow (SD) for 15, 30 or 45 weeks, after which they were evaluated by adiposity index, serum leptin levels, reproductive organ weights and sperm counts. In a second experiment, rats received HFD or SD only for 15 weeks, long enough to cause obesity. Sexual hormones and sexual behavior were evaluated in these animals, as well as fertility after natural mating. Another group of rats was submitted to motility analysis and fertility evaluation after in utero insemination.
Results
After 15, 30 or 45 weeks, HFD-fed animals presented significant increases in obesity index and serum leptin levels. Reproductive organ weights and sperm counts in the testis and epididymis were similar between the two groups at all timepoints studied. Sexual behavior was not altered by the diet regimen, and HFD fertility after natural mating was also similar to SD-fed animals. Intergroup testosterone levels were also comparable, but estradiol levels were increased in HFD rats. Furthermore, sperm quality was reduced in HFD animals as evidenced by their decreased percentage of sperm with progressive movement. This altered motility parameter was followed by a trend toward reduction in fertility potential after artificial in utero insemination.
Conclusions
The results reported herein showed that obesity can affect sperm quality, by reducing sperm motility, without affecting other sperm parameters. The low sperm quality caused a slight reduction in fertility potential, showing that obesity may lead to impairment in male fertility.
Journal Article
In utero protein restriction causes growth delay and alters sperm parameters in adult male rats
by
Anselmo-Franci, Janete A
,
Toledo, Fabíola C
,
Kempinas, Wilma DG
in
Adulthood
,
Animals
,
Endocrinology
2011
Background
Recent studies have supported the concept of \"fetal programming\" which suggests that during the intrauterine development the fetus may be programmed to develop diseases in adulthood. The possible effects of
in utero
protein restriction on sexual development of rat male offspring were evaluated in the present study.
Methods
Pregnant
Wistar rats were divided into two experimental groups: one group treated with standard chow (SC, n = 8, 17% protein) and the other group treated with hypoproteic chow (HC, n = 10, 6% protein) throughout gestation. After gestation the two experimental groups received standard chow. To evaluate the possible late reproductive effects of
in utero
protein restriction, the male offspring of both groups were assessed at different phases of sexual development: prepubertal (30 days old); peripubertal (60 days old); adult (90 days old). Student's t-test and Mann-Whitney test were utilized. Differences were considered significant when p < 0.05.
Results
We found that
in utero
protein restriction reduced the body weight of male pups on the first postnatal day and during the different sexual development phases (prepubertal, peripubertal and adult). During adulthood, Sertoli cell number, sperm motility and sperm counts in the testis and epididymal cauda were also reduced in HC. Furthermore, the numbers of sperm presenting morphological abnormalities and cytoplasmic drop retention were higher in HC.
Conclusions
In conclusion,
in utero
protein restriction, under these experimental conditions, causes growth delay and alters male reproductive-system programming in rats, suggesting impairment of sperm quality in adulthood.
Journal Article
Slimmer or Fertile? Pharmacological Mechanisms Involved in Reduced Sperm Quality and Fertility in Rats Exposed to the Anorexigen Sibutramine
by
Sanabria, Marciana
,
Missassi, Gabriela
,
Kempinas, Wilma G.
in
Analysis of Variance
,
Androgens
,
Animals
2013
Sperm acquire motility and fertility capacity during epididymal transit, under the control of androgens and sympathetic innervations. It is already known that the acceleration of epididymal sperm transit time can lead to lower sperm quality. In a previous work we showed that rats exposed to the anorexigen sibutramine, a non-selective serotonin-norepinephrine reuptake inhibitor, presented faster sperm transit time, lower epididymal sperm reserves and potentiation of the tension of epididymal duct to norepinephrine exposed acutely in vitro to sibutramine. In the present work we aimed to further investigate pharmacological mechanisms involved in these alterations and the impact on rat sperm quality. For this, adult male Wistar rats were treated with sibutramine (10 mg/kg/day) or vehicle for 30 days. Sibutramine decreased final body, seminal vesicle, ventral prostate and epididymal weights, as well as sperm transit time in the epididymal cauda. On the contrary of the in vitro pharmacological assays, in which sibutramine was added directly to the bath containing strips of distal epididymal cauda, the ductal tension was not altered after in vivo sub-chronic exposure to sibutramine. However, there is pharmacological evidence that the endogenous epididymal norepinephrine reserves were reduced in these animals. It was also shown that the decrease in prostate weight can be related to increased tension developed of the gland, due to sibutramine sympathomimetic effects. In addition, our results showed reduced sperm quality after in utero artificial insemination, a more sensitive procedure to assess fertility in rodents. The epididymal norepinephrine depletion exerted by sibutramine, associated with decreases in sperm transit time, quantity and quality, leading to reduced fertility in this experimental model, reinforces the concerns about the possible impact on fertility of man taking sibutramine as well as other non-selective serotonin-norepinephrine reuptake inhibitors, especially considering the lower reproductive efficiency of humans compared to males of other species.
Journal Article
Short- and long-term reproductive effects of prenatal and lactational growth restriction caused by maternal diabetes in male rats
by
Damasceno, Débora C
,
Fernandez, Carla DB
,
Volpato, Gustavo T
in
Animal reproduction
,
Animals
,
Animals, Newborn
2011
Background
A suboptimal intrauterine environment may have a detrimental effect on gonadal development and thereby increases the risk for reproductive disorders and infertility in adult life. Here, we used uncontrolled maternal diabetes as a model to provoke pre- and perinatal growth restriction and evaluate the sexual development of rat male offspring.
Methods
Maternal diabetes was induced in the dams through administration of a single i.v. dose of 40 mg/kg streptozotocin, 7 days before mating. Female rats presenting glycemic levels above 200 mg/dL after the induction were selected for the experiment. The male offspring was analyzed at different phases of sexual development, i.e., peripuberty, postpuberty and adulthood.
Results
Body weight and blood glucose levels of pups, on the third postnatal day, were lower in the offspring of diabetic dams compared to controls. Maternal diabetes also provoked delayed testicular descent and preputial separation. In the offspring of diabetic dams the weight of reproductive organs at 40, 60 and 90 days-old was lower, as well as sperm reserves and sperm transit time through the epididymis. However the plasma testosterone levels were not different among experimental groups.
Conclusions
It is difficult to isolate the effects directly from diabetes and those from IUGR. Although the exposure to hyperglycemic environment during prenatal life and lactation delayed the onset of puberty in male rats, the IUGR, in the studied model, did not influenced the structural organization of the male gonads of the offspring at any point during sexual development. However the decrease in sperm reserves in epididymal cauda and the acceleration in sperm transit time in this portion of epididymis may lead to an impairment of sperm quality and fertility potential in these animals. Additional studies are needed in attempt to investigate the fertility of animals with intrauterine growth restriction by maternal diabetes and possible multigenerational effects.
Journal Article