Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
8 result(s) for "Pesoli, Matteo"
Sort by:
The effects of different frequencies of rhythmic acoustic stimulation on gait stability in healthy elderly individuals: a pilot study
The efficacy of rhythmic acoustic stimulation (RAS) to improve gait and balance in healthy elderly individuals is controversial. Our aim was to investigate, through 3D gait analysis, the effect of different types of RAS (fixed frequency and based on subject-specific cadence), using conventional gait parameters and the trunk displacement as readouts. Walking at a fixed frequency of 80 bpm, the subjects showed extended duration of gait cycle and increased gait variability while the same individuals, walking at a fixed frequency of 120 bpm, showed reduced trunk sway and gait cycle duration. With regard to the RAS at subject-specific frequencies, walking at 90% of the subject-specific average cadence did not significantly modify the gait parameters, except for the speed, which was reduced. In contrast, walking at 100% and 110% of the mean cadence caused increased stride length and a slight reduction of temporal parameters and trunk sway. In conclusion, this pilot study shows that using RAS at fixed frequencies might be an inappropriate strategy, as it is not adjusted to individual gait characteristics. On the other hand, RAS frequencies equal to or slightly higher than each subject's natural cadence seem to be beneficial for gait and stability.
A night of sleep deprivation alters brain connectivity and affects specific executive functions
Sleep is a fundamental physiological process necessary for efficient cognitive functioning especially in relation to memory consolidation and executive functions, such as attentional and switching abilities. The lack of sleep strongly alters the connectivity of some resting-state networks, such as default mode network and attentional network. In this study, by means of magnetoencephalography (MEG) and specific cognitive tasks, we investigated how brain topology and cognitive functioning are affected by 24 h of sleep deprivation (SD). Thirty-two young men underwent resting-state MEG recording and evaluated in letter cancellation task (LCT) and task switching (TS) before and after SD. Results showed a worsening in the accuracy and speed of execution in the LCT and a reduction of reaction times in the TS, evidencing thus a worsening of attentional but not of switching abilities. Moreover, we observed that 24 h of SD induced large-scale rearrangements in the functional network. These findings evidence that 24 h of SD is able to alter brain connectivity and selectively affects cognitive domains which are under the control of different brain networks.
Peripersonal Visuospatial Abilities in Williams Syndrome Analyzed by a Table Radial Arm Maze Task
Williams syndrome (WS) is a genetic deletion syndrome characterized by severe visuospatial deficits affecting spatial exploration and navigation abilities in extra-personal space. To date, little is known about spatial elaboration and reaching abilities in the peripersonal space in individuals with WS. The present study is aimed at evaluating the visuospatial abilities in individuals with WS and comparing their performances with those of mental age-matched typically developing (TD) children by using a highly sensitive ecological version of the Radial Arm Maze (table RAM). We evaluated 15 individuals with WS and 15 TD children in two different table RAM paradigms: the free-choice paradigm, mainly to analyze the aspects linked to procedural and memory components, and the forced-choice paradigm, to disentangle the components linked to spatial working memory from the procedural ones. Data show that individuals with WS made significantly more working memory errors as compared to TD children, thus evidencing a marked deficit in resolving the task when the mnesic load increased. Our findings provide new insights on the cognitive profile of WS.
Mindfulness Meditation Is Related to Long-Lasting Changes in Hippocampal Functional Topology during Resting State: A Magnetoencephalography Study
It has been suggested that the practice of meditation is associated to neuroplasticity phenomena, reducing age-related brain degeneration and improving cognitive functions. Neuroimaging studies have shown that the brain connectivity changes in meditators. In the present work, we aim to describe the possible long-term effects of meditation on the brain networks. To this aim, we used magnetoencephalography to study functional resting-state brain networks in Vipassana meditators. We observed topological modifications in the brain network in meditators compared to controls. More specifically, in the theta band, the meditators showed statistically significant (p corrected = 0.009) higher degree (a centrality index that represents the number of connections incident upon a given node) in the right hippocampus as compared to controls. Taking into account the role of the hippocampus in memory processes, and in the pathophysiology of Alzheimer’s disease, meditation might have a potential role in a panel of preventive strategies.
Influence of Pre-reproductive Maternal Enrichment on Coping Response to Stress and Expression of c-Fos and Glucocorticoid Receptors in Adolescent Offspring
Environmental enrichment (EE) is an experimental setting broadly used for investigating the effects of complex social, cognitive, and sensorimotor stimulations on brain structure and function. Recent studies point out that parental EE experience, even occurring in the pre-reproductive phase, affects neural development and behavioral trajectories of the offspring. In the present study we investigated the influences of pre-reproductive EE of female rats on maternal behavior and adolescent male offspring's coping response to an inescapable stressful situation after chronic social isolation. For this purpose female Wistar rats were housed from weaning to breeding age in enriched or standard environments. Subsequently, all females were mated and housed in standard conditions until offspring weaning. On the first day (ppd 1), mother-pup interactions in undisturbed conditions were recorded. Further, after weaning the male pups were reared for 2 weeks under social isolation or in standard conditions, and then submitted or not to a single-session Forced Swim Test (FST). Offspring's neuronal activation and plastic changes were identified by immunohistochemistry for c-Fos and glucocorticoid receptors (GRs), and assessed by using stereological analysis. The biochemical correlates were measured in the hippocampus, amygdala and cingulate cortex, structures involved in hypothalamic-pituitary-adrenocortical axis regulation. Enriched dams exhibited increased Crouching levels in comparison to standard reared dams. In the offspring of both kinds of dams, social isolation reduced body weight, decreased Immobility, and increased Swimming during FST. Moreover, isolated offspring of enriched dams exhibited higher levels of Climbing in comparison to controls. Interestingly, in the amygdala of both isolated and control offspring of enriched dams we found a lower number of c-Fos immunopositive cells in response to FST and a higher number of GRs in comparison to the offspring of standard dams. These results highlight the profound influence of a stressful condition, such as the social isolation, on the brain of adolescent rats, and underline intergenerational effects of maternal experiences in regulating the offspring response to stress.
Loss of integration of brain networks after sleep deprivation relates to the worsening of cognitive functions
Abstract The topology of brain networks changes according to environmental demands and can be described within the framework of graph theory. We hypothesized that 24-hours long sleep deprivation (SD) causes functional rearrangements of the brain topology so as to impair optimal communication, and that such rearrangements relate to the performance in specific cognitive tasks, namely the ones specifically requiring attention. Thirty-two young men underwent resting-state MEG recording and assessments of attention and switching abilities before and after SD. We found loss of integration of brain network and a worsening of attention but not of switching abilities. These results show that brain network changes due to SD affect switching abilities, worsened attention and induce large-scale rearrangements in the functional networks. Competing Interest Statement The authors have declared no competing interest. Footnotes * the title has been changed. an update has been made to the \"statistical analysis\", \"results\" and \"discussion\" sections. Fig. 7 concerning correlations has changed following the new statistical analyzes carried out
The effects of different frequencies of rhythmic acoustic stimulation on gait kinematics and trunk sway in healthy elderly population
ABSTRACT The use of rhythmic acoustic stimulation (RAS) in improving gait and balance in healthy elderly subjects has been widely investigated. However, methodologies and results are often controversial. In this study, we hypothesize that both the kinematic features of gait and stability, depend on the frequency at which RAS is administered. Our aim was to observe, through 3D Gait Analysis, the effect of different types of RAS (at a fixed frequency or based on the average cadence of each subject) on both gait spatio-temporal parameters and stability. The latter was estimated through an innovative measure, the trunk displacement index (TDI) that we have recently implemented. We observed that the low frequencies RAS led to a general slowdown of gait, which did not provide any clear benefit and produced harmful effects on stability when the frequency became too low compared to the individual natural frequency. On the contrary, the high frequencies of RAS showed a slight acceleration of gait, accompanied by better stability (as documented by a lower TDI value), regardless of the type of RAS. Finally, the RAS equal to the individual natural cadence also produced an increase in stability. Competing Interest Statement The authors have declared no competing interest.
Functional brain network topology across the menstrual cycle is sex hormone dependent and correlates with the individual well-being
Abstract The menstrual cycle is known to influence the behaviour. The neuronal bases of this phenomenon are poorly understood. We hypothesized that hormones, might affect the large-scale organization of the brain functional networks and that, in turn, such changes might have behavioural correlates in terms of the affective state. To test our hypothesis, we took advantage of magnetoencephalography to investigate brain topology in early follicular, ovulatory and luteal phases, in twenty-four naturally-cycling women without signs of anxiety and/or depression. We show that in the alpha band the betweenness centrality (BC) of the right posterior cingulate gyrus (PCG) during the ovulatory phase is increased and the rise is predicted by the levels of estradiol. We also demonstrate that the increase in the BC is related to improved subjective well-being that, in turn, is correlated to the estradiol levels. The increased topological centrality of the PCG during the ovulatory phase could have implications in reproductive psychology. Competing Interest Statement The authors have declared no competing interest.