Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
385
result(s) for
"Peterson, Daniel G"
Sort by:
Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement
2015
Two draft sequences of Gossypium hirsutum, the most widely cultivated cotton species, provide insights into genome structure, genome rearrangement, gene evolution and cotton fiber biology.
Upland cotton is a model for polyploid crop domestication and transgenic improvement. Here we sequenced the allotetraploid
Gossypium hirsutum
L. acc. TM-1 genome by integrating whole-genome shotgun reads, bacterial artificial chromosome (BAC)-end sequences and genotype-by-sequencing genetic maps. We assembled and annotated 32,032 A-subgenome genes and 34,402 D-subgenome genes. Structural rearrangements, gene loss, disrupted genes and sequence divergence were more common in the A subgenome than in the D subgenome, suggesting asymmetric evolution. However, no genome-wide expression dominance was found between the subgenomes. Genomic signatures of selection and domestication are associated with positively selected genes (PSGs) for fiber improvement in the A subgenome and for stress tolerance in the D subgenome. This draft genome sequence provides a resource for engineering superior cotton lines.
Journal Article
De Novo Genome Sequence Assemblies of Gossypium raimondii and Gossypium turneri
2019
Cotton is an agriculturally important crop. Because of its importance, a genome sequence of a diploid cotton species (Gossypium raimondii, D-genome) was first assembled using Sanger sequencing data in 2012. Improvements to DNA sequencing technology have improved accuracy and correctness of assembled genome sequences. Here we report a new de novo genome assembly of G. raimondii and its close relative G. turneri. The two genomes were assembled to a chromosome level using PacBio long-read technology, HiC, and Bionano optical mapping. This report corrects some minor assembly errors found in the Sanger assembly of G. raimondii. We also compare the genome sequences of these two species for gene composition, repetitive element composition, and collinearity. Most of the identified structural rearrangements between these two species are due to intra-chromosomal inversions. More inversions were found in the G. turneri genome sequence than the G. raimondii genome sequence. These findings and updates to the D-genome sequence will improve accuracy and translation of genomics to cotton breeding and genetics.
Journal Article
A high-resolution model of gene expression during Gossypium hirsutum (cotton) fiber development
by
Miller, Emma R.
,
Arick, Mark A.
,
Swaminathan, Sivakumar
in
Analysis
,
Animal Genetics and Genomics
,
Biological activity
2025
Background
Cotton fiber development relies on complex and intricate biological processes to transform newly differentiated fiber initials into the mature, extravagantly elongated cellulosic cells that are the foundation of this economically important cash crop. Here we extend previous research into cotton fiber development by employing controlled conditions to minimize variability and utilizing time-series sampling and analyses to capture daily transcriptomic changes from early elongation through the early stages of secondary wall synthesis (6 to 24 days post anthesis; DPA).
Results
A majority of genes are expressed in fiber, largely partitioned into two major coexpression modules that represent genes whose expression generally increases or decreases during development. Differential gene expression reveals a massive transcriptomic shift between 16 and 17 DPA, corresponding to the onset of the transition phase that leads to secondary wall synthesis. Subtle gene expression changes are captured by the daily sampling, which are discussed in the context of fiber development. Coexpression and gene regulatory networks are constructed and associated with phenotypic aspects of fiber development, including turgor and cellulose production. Key genes are considered in the broader context of plant secondary wall synthesis, noting their known and putative roles in cotton fiber development.
Conclusions
The analyses presented here highlight the importance of fine-scale temporal sampling on understanding developmental processes and offer insight into genes and regulatory networks that may be important in conferring the unique fiber phenotype.
Journal Article
Transcriptome analysis of the 2,4-dichlorophenoxyacetic acid (2,4-D)-tolerant cotton chromosome substitution line CS-B15sh and its susceptible parental lines G. hirsutum L. cv. Texas Marker-1 and G. barbadense L. cv. Pima 379
by
Magbanua, Zenaida V.
,
Arick, Mark A.
,
Dean, Jeffrey F. D.
in
2,4-D
,
abiotic stress tolerance
,
Abscisic acid
2022
The cotton chromosome substitution line, CS-B15sh, exhibits 41% lower injury from 2,4-D when applied at the field recommended rate of 1.12 kg ae ha −1 (1×) than does Texas Marker-1 (TM-1). CS-B15sh was developed in the genetic background of Gossypium hirsutum L. cv TM-1 and has chromosome introgression on the short arm of chromosome 15 from Gossypium barbadense L. cv. Pima 379. In a previous experiment, we observed reduced translocation of [ 14 C]2,4-D outside the treated leaf tissue in CS-B15sh, which contrasted with an increased translocation of the herbicide in the tissues above and below the treated leaf in TM-1. Our results indicate a potential 2,4-D tolerance mechanism in CS-B15sh involving altered movement of 2,4-D. Here, we used RNA sequencing (RNA-seq) to determine the differential expression of genes between 2,4-D-challenged and control plants of the tolerant (CS-B15sh) and susceptible lines (TM-1 and Pima 379). Several components of the 2,4-D/auxin-response pathway—including ubiquitin E3 ligase, PB1|AUX/IAA, ARF transcription factors, and F-box proteins of the SCF TIR1/AFB complex—were upregulated with at least threefold higher expression in TM-1 compared with CS-B15sh, while both Pima 379 and TM-1 showed the same fold change expression for PB1|AUX/IAA mRNA. Some genes associated with herbicide metabolism, including flavin monooxygenase (Gohir.A01G174100) and FAD-linked oxidase (Gohir.D06G002600), exhibited at least a twofold increase in CS-B15sh than in TM-1 (the gene was not expressed in Pima 379), suggesting a potential relationship between the gene’s expression and 2,4-D tolerance. It is interesting to note that glutathione S-transferase was differentially expressed in both CS-B15sh and Pima 379 but not in TM-1, while cytochrome P450 and other genes involved in the oxidation–reduction process were significantly expressed only in CS-B15sh in response to 2,4-D. Gene set enrichment analysis on the union DEGs of the three cotton genotypes revealed the depletion of transcripts involved in photosynthesis and enrichment of transcripts involved in ABA response and signaling.
Journal Article
Assessment of the genetic diversity of Atlantic bottlenose dolphin (Tursiops truncatus) strandings in the Mississippi Sound (USA)
by
Magbanua, Zenaida V.
,
Peterman, Mark
,
Moore, Debra
in
Animals
,
Aquatic mammals
,
Biology and Life Sciences
2025
The common bottlenose dolphin ( Tursiops truncatus ) is a key marine mammal species in the Gulf of Mexico, playing an essential role as a top predator. This study investigates the genetic diversity and population structure of bottlenose dolphins stranded in the Mississippi Sound from 2010 to 2021. Tissue samples (muscle, liver, lung, kidney, and brain) were collected from 511 stranded dolphins, and mitochondrial DNAs (mtDNA) were extracted for analysis. A total of 417 samples were successfully amplified and sequenced using high throughput sequencing, yielding 386 complete mitogenomes. Genetic diversity metrics, such as nucleotide and haplotype diversity, were calculated, and population structure was inferred for both mitochondrial control region (mtCR) and whole mitogenome sequences. Using the whole mitogenome, the study identified four genetically distinct populations within the Mississippi Sound, demonstrating regional variation in dolphin populations. Notably, two stranded individuals likely originated from populations outside the sampled area. The use of whole mitogenomes allowed for improved resolution of genetic diversity and population differentiation compared to previous studies using partial mtDNA sequences. These findings enhance our understanding of bottlenose dolphin population structure in the region and underscore the value of stranded animals for population genetic studies.
Journal Article
Origin and diversity of the wild cottons (Gossypium hirsutum) of Mound Key, Florida
by
Rogers, Karen M.
,
Magbanua, Zenaida V.
,
Pechanova, Olga
in
631/181/2474
,
631/208/8
,
archaeology
2024
Elucidating genetic diversity within wild forms of modern crops is essential for understanding domestication and the possibilities of wild germplasm utilization.
Gossypium hirsutum
is a predominant source of natural plant fibers and the most widely cultivated cotton species. Wild forms of
G. hirsutum
are challenging to distinguish from feral derivatives, and truly wild populations are uncommon. Here we characterize a population from Mound Key Archaeological State Park, Florida using genome-wide SNPs extracted from 25 individuals over three sites. Our results reveal that this population is genetically dissimilar from other known wild, landrace, and domesticated cottons, and likely represents a pocket of previously unrecognized wild genetic diversity. The unexpected level of divergence between the Mound Key population and other wild cotton populations suggests that the species may harbor other remnant and genetically distinct populations that are geographically scattered in suitable habitats throughout the Caribbean. Our work thus has broader conservation genetic implications and suggests that further exploration of natural diversity in this species is warranted.
Journal Article
Gene disruption by structural mutations drives selection in US rice breeding over the last century
by
Chougule, Kapeel
,
Simpson, Sheron A.
,
Edwards, Jeremy D.
in
Analysis
,
Biology and Life Sciences
,
Chromosome deletion
2021
The genetic basis of general plant vigor is of major interest to food producers, yet the trait is recalcitrant to genetic mapping because of the number of loci involved, their small effects, and linkage. Observations of heterosis in many crops suggests that recessive, malfunctioning versions of genes are a major cause of poor performance, yet we have little information on the mutational spectrum underlying these disruptions. To address this question, we generated a long-read assembly of a tropical japonica rice ( Oryza sativa ) variety, Carolina Gold, which allowed us to identify structural mutations (>50 bp) and orient them with respect to their ancestral state using the outgroup, Oryza glaberrima . Supporting prior work, we find substantial genome expansion in the sativa branch. While transposable elements (TEs) account for the largest share of size variation, the majority of events are not directly TE-mediated. Tandem duplications are the most common source of insertions and are highly enriched among 50-200bp mutations. To explore the relative impact of various mutational classes on crop fitness, we then track these structural events over the last century of US rice improvement using 101 resequenced varieties. Within this material, a pattern of temporary hybridization between medium and long-grain varieties was followed by recent divergence. During this long-term selection, structural mutations that impact gene exons have been removed at a greater rate than intronic indels and single-nucleotide mutations. These results support the use of ab initio estimates of mutational burden, based on structural data, as an orthogonal predictor in genomic selection.
Journal Article
Comparative transcriptomic and phenotypic analysis of monoclonal and polyclonal Populus deltoides genotypes
2025
Populus species are highly valued for bioenergy and bioproducts due to their rapid growth and productivity. Polyclonal plantings, or mixtures of Populus clones, have shown the potential to enhance resource utilization and productivity, likely due to phenotypic differences arising from niche differentiation. In this study, we investigated gene expression and productivity in monoclonal and polyclonal stands of P. deltoides . Phenotypic results showed that polyclonal plots exhibited higher leaf area index (LAI; p < 0.01, 2.96 ± 0.057 m 2 ) and total biomass (p < 0.01, 2.74 ± 0.06) compared to monoclonal plots, indicating superior productivity. RNA sequencing revealed upregulation of key genes such as exocyst subunit exo70 family protein H7 (EXO70H7) , NDH-dependent cyclic electron flow 5 (NDF5) , and expansin-like A3 ( EXLA3 ). We also observed enrichment in phenylalanine metabolism and other secondary metabolic pathways in clone S7C8. Phenotypic results, upregulated genes and enriched biological pathways identified in this study may explain the enhanced productivity, increased nitrate content, and expanded canopy in polyclonal plantings. Overall, this study provides a foundation for future research to enhance forest productivity by linking molecular mechanisms to practical applications in field plantings.
Journal Article
Evolution of Genome Size and Complexity in Pinus
by
Garcia, Saul A
,
Magbanua, Zenaida
,
Peterson, Daniel G
in
Angiosperms
,
Arabidopsis - genetics
,
Arabidopsis thaliana
2009
Background: Genome evolution in the gymnosperm lineage of seed plants has given rise to many of the most complex and largest plant genomes, however the elements involved are poorly understood. Methodology/Principal Findings: Gymny is a previously undescribed retrotransposon family in Pinus that is related to Athila elements in Arabidopsis. Gymny elements are dispersed throughout the modern Pinus genome and occupy a physical space at least the size of the Arabidopsis thaliana genome. In contrast to previously described retroelements in Pinus, the Gymny family was amplified or introduced after the divergence of pine and spruce (Picea). If retrotransposon expansions are responsible for genome size differences within the Pinaceae, as they are in angiosperms, then they have yet to be identified. In contrast, molecular divergence of Gymny retrotransposons together with other families of retrotransposons can account for the large genome complexity of pines along with protein-coding genic DNA, as revealed by massively parallel DNA sequence analysis of Cot fractionated genomic DNA. Conclusions/Significance: Most of the enormous genome complexity of pines can be explained by divergence of retrotransposons, however the elements responsible for genome size variation are yet to be identified. Genomic resources for Pinus including those reported here should assist in further defining whether and how the roles of retrotransposons differ in the evolution of angiosperm and gymnosperm genomes.
Journal Article
Genetic Variation in Taste Receptor Genes (SCNN1B, TRPV1) and Its Correlation with the Perception of Saltiness in Normotensive and Hypertensive Adults
by
Tidwell, Diane K.
,
Peterson, Daniel G.
,
Tolar-Peterson, Terezie
in
Cardiovascular disease
,
Genes
,
Genetic aspects
2021
Background. Different taste preferences correlated with genetic variations may lead to food consumption patterns that contribute to nutrient-related health outcomes such as hypertension. Objectives. The aim of this study was to determine whether single nucleotide polymorphisms (SNPs) in the salt taste receptor genes SCNN1B and TRPV1 affect salt taste perception among normotensive and hypertensive people. Materials and Methods. We conducted a cross-sectional case control study by design consisting of a normotensive and hypertensive group. Participants were 253 adults with age range of 20–82 residing in Mississippi, USA. For each of 128 normotensives and 125 hypertensives, the salt taste recognition threshold and salt taste receptor genotype were determined. Results. The hypertensive group had a higher salt taste recognition threshold than the normotensive group (P<0.001). The polymorphism of TRPV1, rs4790522, with the AA genotype was associated with a higher salt recognition threshold (lower salt taste sensitivity) in people with hypertension and obesity. Moreover, the polymorphism of TRPV1, rs8065080, and SCNN1B, rs239345, genes were associated with a risk of hypertension (P=0.016 and P=0.024). Conclusion. Correlations between SNPs, salt taste sensitivity, and hypertension risk were observed. People with hypertension had a higher salt taste threshold than those with normotension.
Journal Article