Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
108
result(s) for
"Peterson, Quinn P."
Sort by:
Pancreatic islet cryopreservation by vitrification achieves high viability, function, recovery and clinical scalability for transplantation
by
Sethia, Nikhil
,
Peterson, Quinn P.
,
Tobolt, Diane
in
692/308/2171
,
692/308/2778
,
692/699/2743/137
2022
Pancreatic islet transplantation can cure diabetes but requires accessible, high-quality islets in sufficient quantities. Cryopreservation could solve islet supply chain challenges by enabling quality-controlled banking and pooling of donor islets. Unfortunately, cryopreservation has not succeeded in this objective, as it must simultaneously provide high recovery, viability, function and scalability. Here, we achieve this goal in mouse, porcine, human and human stem cell (SC)-derived beta cell (SC-beta) islets by comprehensive optimization of cryoprotectant agent (CPA) composition, CPA loading and unloading conditions and methods for vitrification and rewarming (VR). Post-VR islet viability, relative to control, was 90.5% for mouse, 92.1% for SC-beta, 87.2% for porcine and 87.4% for human islets, and it remained unchanged for at least 9 months of cryogenic storage. VR islets had normal macroscopic, microscopic, and ultrastructural morphology. Mitochondrial membrane potential and adenosine triphosphate (ATP) levels were slightly reduced, but all other measures of cellular respiration, including oxygen consumption rate (OCR) to produce ATP, were unchanged. VR islets had normal glucose-stimulated insulin secretion (GSIS) function in vitro and in vivo. Porcine and SC-beta islets made insulin in xenotransplant models, and mouse islets tested in a marginal mass syngeneic transplant model cured diabetes in 92% of recipients within 24–48 h after transplant. Excellent glycemic control was seen for 150 days. Finally, our approach processed 2,500 islets with >95% islets recovery at >89% post-thaw viability and can readily be scaled up for higher throughput. These results suggest that cryopreservation can now be used to supply needed islets for improved transplantation outcomes that cure diabetes.
Optimization of vitrification approaches substantially improves pancreatic islet cryopreservation for banking and boosts transplantation outcomes in diabetes.
Journal Article
A method for the generation of human stem cell-derived alpha cells
2020
The generation of pancreatic cell types from renewable cell sources holds promise for cell replacement therapies for diabetes. Although most effort has focused on generating pancreatic beta cells, considerable evidence indicates that glucagon secreting alpha cells are critically involved in disease progression and proper glucose control. Here we report on the generation of stem cell-derived human pancreatic alpha (SC-alpha) cells from pluripotent stem cells via a transient pre-alpha cell intermediate. These pre-alpha cells exhibit a transcriptional profile similar to mature alpha cells and although they produce proinsulin protein, they do not secrete significant amounts of processed insulin. Compound screening identified a protein kinase c activator that promotes maturation of pre-alpha cells into SC-alpha cells. The resulting SC-alpha cells do not express insulin, share an ultrastructure similar to cadaveric alpha cells, express and secrete glucagon in response to glucose and some glucagon secretagogues, and elevate blood glucose upon transplantation in mice.
Deriving functional pancreatic cell types from human stem cells may have important clinical applications. Building on previous work, here the authors generate stem cell-derived alpha cells via a polyhormonal intermediate, which have a gene expression pattern similar to human islet alpha cells and behave as such when transplanted into mice.
Journal Article
Core–shell hydrogel microcapsules enable formation of human pluripotent stem cell spheroids and their cultivation in a stirred bioreactor
2021
Cellular therapies based on human pluripotent stem cells (hPSCs) offer considerable promise for treating numerous diseases including diabetes and end stage liver failure. Stem cell spheroids may be cultured in stirred bioreactors to scale up cell production to cell numbers relevant for use in humans. Despite significant progress in bioreactor culture of stem cells, areas for improvement remain. In this study, we demonstrate that microfluidic encapsulation of hPSCs and formation of spheroids. A co-axial droplet microfluidic device was used to fabricate 400 μm diameter capsules with a poly(ethylene glycol) hydrogel shell and an aqueous core. Spheroid formation was demonstrated for three hPSC lines to highlight broad utility of this encapsulation technology. In-capsule differentiation of stem cell spheroids into pancreatic β-cells in suspension culture was also demonstrated.
Journal Article
Dapagliflozin mitigates cellular stress and inflammation through PI3K/AKT pathway modulation in cardiomyocytes, aortic endothelial cells, and stem cell-derived β cells
by
Marzook, Hezlin
,
Peterson, Quinn P.
,
Alsereidi, Fatmah R.
in
1-Phosphatidylinositol 3-kinase
,
AKT protein
,
AKT signaling
2024
Dapagliflozin (DAPA), a sodium-glucose cotransporter 2 (SGLT2) inhibitor, is well-recognized for its therapeutic benefits in type 2 diabetes (T2D) and cardiovascular diseases. In this comprehensive in vitro study, we investigated DAPA’s effects on cardiomyocytes, aortic endothelial cells (AECs), and stem cell-derived beta cells (SC-β), focusing on its impact on hypertrophy, inflammation, and cellular stress. Our results demonstrate that DAPA effectively attenuates isoproterenol (ISO)-induced hypertrophy in cardiomyocytes, reducing cell size and improving cellular structure. Mechanistically, DAPA mitigates reactive oxygen species (ROS) production and inflammation by activating the AKT pathway, which influences downstream markers of fibrosis, hypertrophy, and inflammation. Additionally, DAPA’s modulation of SGLT2, the Na+/H + exchanger 1 (NHE1), and glucose transporter (GLUT 1) type 1 highlights its critical role in maintaining cellular ion balance and glucose metabolism, providing insights into its cardioprotective mechanisms. In aortic endothelial cells (AECs), DAPA exhibited notable anti-inflammatory properties by restoring AKT and phosphoinositide 3-kinase (PI3K) expression, enhancing mitogen-activated protein kinase (MAPK) activation, and downregulating inflammatory cytokines at both the gene and protein levels. Furthermore, DAPA alleviated tumor necrosis factor (TNFα)-induced inflammation and stress responses while enhancing endothelial nitric oxide synthase (eNOS) expression, suggesting its potential to preserve vascular function and improve endothelial health. Investigating SC-β cells, we found that DAPA enhances insulin functionality without altering cell identity, indicating potential benefits for diabetes management. DAPA also upregulated MAFA, PI3K, and NRF2 expression, positively influencing β-cell function and stress response. Additionally, it attenuated NLRP3 activation in inflammation and reduced NHE1 and glucose-regulated protein GRP78 expression, offering novel insights into its anti-inflammatory and stress-modulating effects. Overall, our findings elucidate the multifaceted therapeutic potential of DAPA across various cellular models, emphasizing its role in mitigating hypertrophy, inflammation, and cellular stress through the activation of the AKT pathway and other signaling cascades. These mechanisms may not only contribute to enhanced cardiac and endothelial function but also underscore DAPA’s potential to address metabolic dysregulation in T2D.
Graphical abstract
Key message
DAPA effectively attenuates ISO-induced cardiomyocyte hypertrophy by reducing cell size and improving cellular structure.
DAPA exhibits anti-inflammatory properties in AECs by restoring AKT and PI3K expression, upregulating MAPK activation, and downregulating inflammatory gene expression.
DAPA enhances insulin functionality in SC-β cells without altering cell identity, suggesting potential benefits in diabetes management.
DAPA’s modulation of SGLT2, NHE1, and GLUT1 expression in cardiomyocytes underscores its role in cellular ion balance and glucose metabolism, contributing to its cardioprotective mechanisms.
DAPA alleviates TNFα-induced inflammation and stress responses in AECs, while enhancing eNOS expression, indicating its potential to preserve vascular function.
DAPA attenuates NLRP3 activation and reduces NHE1 and GRP78 expression in SC-β cells, offering novel insights into its anti-inflammatory and stress-modulating effects.
Journal Article
Reversal of β cell de-differentiation by a small molecule inhibitor of the TGFβ pathway
2014
Dysfunction or death of pancreatic β cells underlies both types of diabetes. This functional decline begins with β cell stress and de-differentiation. Current drugs for type 2 diabetes (T2D) lower blood glucose levels but they do not directly alleviate β cell stress nor prevent, let alone reverse, β cell de-differentiation. We show here that Urocortin 3 (Ucn3), a marker for mature β cells, is down-regulated in the early stages of T2D in mice and when β cells are stressed in vitro. Using an insulin expression-coupled lineage tracer, with Ucn3 as a reporter for the mature β cell state, we screen for factors that reverse β cell de-differentiation. We find that a small molecule inhibitor of TGFβ receptor I (Alk5) protects cells from the loss of key β cell transcription factors and restores a mature β cell identity even after exposure to prolonged and severe diabetes.
Diabetes is a condition that develops when the body does not produce or use a hormone called insulin effectively. Insulin helps fat and muscle cells absorb glucose from the blood, and so diabetes can result in high levels of blood glucose, which can cause strokes, blindness, and heart disease.
In healthy individuals, beta cells in the pancreas (a large gland located behind the stomach) produce insulin. The beta cells develop from endocrine progenitor cells, which are unspecialised cells that can either duplicate themselves or ‘differentiate’ to form one of the specialised cell types found in the pancreas.
In diabetic patients, however, certain stresses (such as an immune attack in type-1 diabetics or insulin-resistance due to obesity, pregnancy, or ageing in type-2 diabetics) can cause mature beta cells to lose their identity in a process known as ‘de-differentiation’. This means that beta cells either revert back to an earlier stage in their development or adopt a new dysfunctional identity. When this occurs, the body loses beta cells and is unable to produce insulin.
It was not known whether de-differentiated beta cells in diabetic patients can recover to form mature beta cells that are capable of producing insulin. Additionally, the drugs currently used to treat diabetes are able to lower blood glucose levels, but these drugs do not replace the lost beta cells.
Blum et al. now show that mice stop expressing a gene called Urocortin 3 when beta cells first start to de-differentiate. Only functional beta cells express Urocortin 3, so this gene is a useful ‘marker’ that can be used to tell if a cell is a mature, functional beta cell or not. Using this system, Blum et al. found that if de-differentiated cells are transplanted into a non-diabetic mouse, they are able to revert back into mature beta cells that can produce insulin. This happens even if the cells have been de-differentiated for a long time.
Blum et al. then used this system to investigate ways of protecting against or reversing beta cell de-differentiation. Using small molecules to block the activity of a protein called TGF beta receptor 1 was found to protect against beta cell de-differentiation and to restore the identity of mature beta cells. The findings of Blum et al. represent a first step towards the possible development of new drugs to prevent or even restore the loss of healthy, mature beta cells in diabetic patients.
Journal Article
Angptl4 links α-cell proliferation following glucagon receptor inhibition with adipose tissue triglyceride metabolism
by
Peterson, Quinn P.
,
Blum, Barak
,
Ben-Zvi, Danny
in
Adipose Tissue - metabolism
,
Angiopoietin-like 4 Protein
,
Angiopoietins - blood
2015
Type 2 diabetes is characterized by a reduction in insulin function and an increase in glucagon activity that together result in hyperglycemia. Glucagon receptor antagonists have been developed as drugs for diabetes; however, they often increase glucagon plasma levels and induce the proliferation of glucagon-secreting α-cells. We find that the secreted protein Angiopoietin-like 4 (Angptl4) is up-regulated via Pparγ activation in white adipose tissue and plasma following an acute treatment with a glucagon receptor antagonist. Induction of adipose angptl4 and Angptl4 supplementation promote α-cell proliferation specifically. Finally, glucagon receptor antagonist improves glycemia in diet-induced obese angptl4 knockout mice without increasing glucagon levels or α-cell proliferation, underscoring the importance of this protein. Overall, we demonstrate that triglyceride metabolism in adipose tissue regulates α-cells in the endocrine pancreas.
Journal Article
Charting cellular identity during human in vitro β-cell differentiation
2019
In vitro differentiation of human stem cells can produce pancreatic β-cells; the loss of this insulin-secreting cell type underlies type 1 diabetes. Here, as a step towards understanding this differentiation process, we report the transcriptional profiling of more than 100,000 human cells undergoing in vitro β-cell differentiation, and describe the cells that emerged. We resolve populations that correspond to β-cells, α-like poly-hormonal cells, non-endocrine cells that resemble pancreatic exocrine cells and a previously unreported population that resembles enterochromaffin cells. We show that endocrine cells maintain their identity in culture in the absence of exogenous growth factors, and that changes in gene expression associated with in vivo β-cell maturation are recapitulated in vitro. We implement a scalable re-aggregation technique to deplete non-endocrine cells and identify CD49a (also known as ITGA1) as a surface marker of the β-cell population, which allows magnetic sorting to a purity of 80%. Finally, we use a high-resolution sequencing time course to characterize gene-expression dynamics during the induction of human pancreatic endocrine cells, from which we develop a lineage model of in vitro β-cell differentiation. This study provides a perspective on human stem-cell differentiation, and will guide future endeavours that focus on the differentiation of pancreatic islet cells, and their applications in regenerative medicine.
Single-cell transcriptional profiling of in vitro human pancreatic β-cell differentiation reveals progenitor and terminal fates, produces a detailed time course of endocrine induction and underpins a lineage model.
Journal Article
Designing magnetic microcapsules for cultivation and differentiation of stem cell spheroids
by
Schornack, Anna Marie R
,
Dharmesh, Ether
,
Stybayeva, Gulnaz
in
Allografts
,
Axial flow
,
Bioreactors
2024
Human pluripotent stem cells (hPSCs) represent an excellent cell source for regenerative medicine and tissue engineering applications. However, there remains a need for robust and scalable differentiation of stem cells into functional adult tissues. In this paper, we sought to address this challenge by developing magnetic microcapsules carrying hPSC spheroids. A co-axial flow-focusing microfluidic device was employed to encapsulate stem cells in core-shell microcapsules that also contained iron oxide magnetic nanoparticles (MNPs). These microcapsules exhibited excellent response to an external magnetic field and could be held at a specific location. As a demonstration of utility, magnetic microcapsules were used for differentiating hPSC spheroids as suspension cultures in a stirred bioreactor. Compared to standard suspension cultures, magnetic microcapsules allowed for more efficient media change and produced improved differentiation outcomes. In the future, magnetic microcapsules may enable better and more scalable differentiation of hPSCs into adult cell types and may offer benefits for cell transplantation.
Journal Article
Guiding Hepatic Differentiation of Pluripotent Stem Cells Using 3D Microfluidic Co-Cultures with Human Hepatocytes
by
Peterson, Quinn P.
,
Saito, Takeshi
,
Choi, Jong Hoon
in
Cell culture
,
Cell differentiation
,
Cell fate
2023
Human pluripotent stem cells (hPSCs) are capable of unlimited proliferation and can undergo differentiation to give rise to cells and tissues of the three primary germ layers. While directing lineage selection of hPSCs has been an active area of research, improving the efficiency of differentiation remains an important objective. In this study, we describe a two-compartment microfluidic device for co-cultivation of adult human hepatocytes and stem cells. Both cell types were cultured in a 3D or spheroid format. Adult hepatocytes remained highly functional in the microfluidic device over the course of 4 weeks and served as a source of instructive paracrine cues to drive hepatic differentiation of stem cells cultured in the neighboring compartment. The differentiation of stem cells was more pronounced in microfluidic co-cultures compared to a standard hepatic differentiation protocol. In addition to improving stem cell differentiation outcomes, the microfluidic co-culture system described here may be used for parsing signals and mechanisms controlling hepatic cell fate.
Journal Article
4241 Identification of small molecules that facilitate the efficient differentiation of stem cell derived β-cells
by
Min, Yuhao
,
Peterson, Quinn P.
,
Clifford, Chris
in
Basic Science/Methodology
,
Beta cells
,
Cell differentiation
2020
OBJECTIVES/GOALS: In this study, we established a high-throughput chemical screening platform to identify small molecules that facilitates efficient differentiation of stem cells derived β (SC-β) cells. Using this platform, we identified several compounds that potentially increase the differentiation efficiency. METHODS/STUDY POPULATION: Differentiation of human embryonic stem cells (HUES8) into SC-β was carried out using previously published protocols in a 3D cell suspension. Single cells were replated in Matrigel-coated well plates at the start of different stages depending on experiments. Differentiation medium supplemented with small molecules at a final concentration of 2 M and 0.2 M was used throughout the stage. All the cells were then fixed and permeabilized. Immunocytochemical staining was performed. Images of each well were taken and analyzed. Numbers of the total cell, insulin-positive cell, NKX6.1-positive cell, and co-positive cell were recorded. Candidate compounds were validated using flow cytometry or ICC. RESULTS/ANTICIPATED RESULTS: We identified several hit compounds that significantly increase the NKX6.1 positive cell percentage compared to the DMSO-treated controls when treated at the PP1 cell stage. Follow up assays demonstrated that at least one of these putative hits reproducibly increased NKX6.1 expression. In addition, we identified other compounds that significantly increase the insulin and NKX6.1 copositive SC-β cell population when treated at the later PP2 cell stage during the differentiation. We expect a dosage-dependent response when the candidate hits are validated using more accurate assays. DISCUSSION/SIGNIFICANCE OF IMPACT: We established a high-throughput screening platform to identify small molecules that increase the efficiency of SC-β direct differentiation. Successful generation of SC-β allows cell replacement therapy in diabetes patients, and a better understanding of pancreatic biology and development.
Journal Article