Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
3 result(s) for "Peteuil, Christophe"
Sort by:
Sustainable sediment management in reservoirs and regulated rivers: Experiences from five continents
By trapping sediment in reservoirs, dams interrupt the continuity of sediment transport through rivers, resulting in loss of reservoir storage and reduced usable life, and depriving downstream reaches of sediments essential for channel form and aquatic habitats. With the acceleration of new dam construction globally, these impacts are increasingly widespread. There are proven techniques to pass sediment through or around reservoirs, to preserve reservoir capacity and to minimize downstream impacts, but they are not applied in many situations where they would be effective. This paper summarizes collective experience from five continents in managing reservoir sediments and mitigating downstream sediment starvation. Where geometry is favorable it is often possible to bypass sediment around the reservoir, which avoids reservoir sedimentation and supplies sediment to downstream reaches with rates and timing similar to pre‐dam conditions. Sluicing (or drawdown routing) permits sediment to be transported through the reservoir rapidly to avoid sedimentation during high flows; it requires relatively large capacity outlets. Drawdown flushing involves scouring and re‐suspending sediment deposited in the reservoir and transporting it downstream through low‐level gates in the dam; it works best in narrow reservoirs with steep longitudinal gradients and with flow velocities maintained above the threshold to transport sediment. Turbidity currents can often be vented through the dam, with the advantage that the reservoir need not be drawn down to pass sediment. In planning dams, we recommend that these sediment management approaches be utilized where possible to sustain reservoir capacity and minimize environmental impacts of dams. Key Points Reservoirs trap sediment, losing storage capacity Downstream reaches can become sediment starved Many dams can be designed/operated to pass sediment
Small-scale study of Debris-Flows Interactions with a Lateral Debris Basin and Crossings: The Manival Torrent case study
Small-scale models are useful tools to study the interactions between debris flows and structures and channels. Small-scale modelling of debris flows remains however complicated because of the complex rheology and scaling challenges of these geophysical processes. An on-going study of a debris basin and the downstream channel where two fords and a bridge are located is presented in this extended abstract. The studied torrent is the Manival catchment, located near Grenoble in France. We present the catchment features, the scientific questions studied, some preliminary calibration results describing the mixtures used to model debris flows as well as results from three debris-flood and two debris-flow runs. In essence, the model highlighted that the structure enable a large share of the bedload transport to pass downstream. Debris flows can be more or equally trapped depending on their rheology which controls the surges dynamics and the deposition slope in the debris basin.
Toward an operational approach for the characterization and modelling of fine sediments dynamics in reservoirs
Achieving a sustainable management of sediment fluxes in existing or proposed reservoirs is a challenging but essential requirement for dam operators. Such objective is of utmost importance to avoid sedimentation-related consequences. Numerical modelling is of great interest to understand the flow and sediment dynamics in a reservoir, to simulate the long-term evolution of sediment deposits and to evaluate the efficiency of various management strategies. This paper presents recent case studies, which validate the feasibility and relevancy of such technical option. The progresses obtained on essential stages of the numerical modelling of sediments dynamics in reservoirs are particularly emphasized. Concerning the distribution of deposits, a promising field method based on an optimum combination of direct samplings with acoustic measurements and video auscultations is detailed. Feedbacks are then provided concerning an innovative device deployed in the field for a direct measurement of the settling velocity. Issues about the assessment of calibration parameters are also addressed in this communication. Lab experiments performed on deposits sampled in several reservoirs provide practical guidance to evaluate the erosion parameters of sediments. Finally, several examples of sediment dynamics modelling in reservoirs including both cohesive and non-cohesive sediment are presented.