Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
16
result(s) for
"Petkova, Stela P."
Sort by:
Reconsidering animal models used to study autism spectrum disorder: Current state and optimizing future
2022
Neurodevelopmental disorders (NDDs), including autism spectrum disorder (ASD) and intellectual disability (ID), are pervasive, often lifelong disorders, lacking evidence‐based interventions for core symptoms. With no established biological markers, diagnoses are defined by behavioral criteria. Thus, preclinical in vivo animal models of NDDs must be optimally utilized. For this reason, experts in the field of behavioral neuroscience convened a workshop with the goals of reviewing current behavioral studies, reports, and assessments in rodent models. Goals included: (a) identifying the maximal utility and limitations of behavior in animal models with construct validity; (b) providing recommendations for phenotyping animal models; and (c) guidelines on how in vivo models should be used and reported reliably and rigorously while acknowledging their limitations. We concluded by recommending minimal criteria for reporting in manuscripts going forward. The workshop elucidated a consensus of potential solutions to several problems, including revisiting claims made about animal model links to ASD (and related conditions). Specific conclusions included: mice (or other rodent or preclinical models) are models of the neurodevelopmental insult, not specifically any disorder (e.g., ASD); a model that perfectly recapitulates a disorder such as ASD is untenable; and greater attention needs be given to validation of behavioral testing methods, data analysis, and critical interpretation.
Journal Article
Extrahypothalamic oxytocin neurons drive stress-induced social vigilance and avoidance
by
Flores-Ramirez, Francisco J.
,
Duque-Wilckens, Natalia
,
Garcia-Carachure, Israel
in
Animals
,
Anxiety - etiology
,
Anxiety - metabolism
2020
Oxytocin increases the salience of both positive and negative social contexts and it is thought that these diverse actions on behavior are mediated in part through circuit-specific action. This hypothesis is based primarily on manipulations of oxytocin receptor function, leaving open the question of whether different populations of oxytocin neurons mediate different effects on behavior. Here we inhibited oxytocin synthesis in a stress-sensitive population of oxytocin neurons specifically within the medioventral bed nucleus of the stria terminalis (BNSTmv). Oxytocin knockdown prevented social stress-induced increases in social vigilance and decreases in social approach. Viral tracing of BNSTmv oxytocin neurons revealed fibers in regions controlling defensive behaviors, including lateral hypothalamus, anterior hypothalamus, and anteromedial BNST (BNSTam). Oxytocin infusion into BNSTam in stress naïve mice increased social vigilance and reduced social approach. These results show that a population of extrahypothalamic oxytocin neurons plays a key role in controlling stress-induced social anxiety behaviors.
Journal Article
Acute administration of lovastatin had no pronounced effect on motor abilities, motor coordination, gait nor simple cognition in a mouse model of Angelman syndrome
by
Petkova, Stela P.
,
Silverman, Jill L.
,
Adhikari, Anna
in
Angelman syndrome
,
Angelman Syndrome - drug therapy
,
Angelman Syndrome - genetics
2025
Translational research is needed to discover pharmacological targets and treatments for the diagnostic behavioral domains of neurodevelopmental disorders (NDDs), including autism spectrum disorders (ASDs) and intellectual disabilities (IDs). One NDD, associated with ASD and ID, is Angelman Syndrome (AS). AS is a rare genetic NDD for which there is currently no cure nor effective therapeutics. The genetic cause is known to be the loss of expression from the maternal allele of ubiquitin protein ligase E3A (
UBE3A
). The
Ube3a
maternal deletion mouse model of AS reliably demonstrates behavioral phenotypes of relevance to AS and therefore offers a suitable in vivo system in which to test potential therapeutics, with construct and face validity. Successes in reducing hyperexcitability and epileptogenesis have been reported in an AS model following acute treatment with lovastatin, an ERK inhibitor by reducing seizure threshold and percentage of mice exhibiting seizures. Since there has been literature reporting disruption of the ERK signaling pathway in AS, we chose to evaluate the effects of acute lovastatin administration in a tailored set of translationally relevant behavioral assays in a mouse model of AS. Unexpectedly, deleterious effects of sedation were observed in wildtype (WT), age matched littermate control mice and despite a baseline hypolocomotive phenotype in AS mice, even further reductions in exploratory activity, were observed post-acute lovastatin treatment. Limitations of this work include that chronic lower dose regimens, more akin to drug administration in humans were beyond the scope of this work, and may have produced a more favorable impact of lovastatin administration over single acute high doses. In addition, lovastatin’s effects were not assessed in younger subjects, since our study focused exclusively on adult functional outcomes. Metrics of gait, as well as motor coordination and motor learning in rotarod, previously observed to be impaired in AS mice, were not improved by lovastatin treatment. Finally, cognition by novel object recognition task was worsened in WT controls and not improved in AS, following lovastatin administration. In conclusion, lovastatin did not indicate any major improvement to AS symptoms, and in fact, worsened behavioral outcomes in the WT control groups. Therefore, despite its attractive low toxicity, immediate availability, and low cost of the drug, further investigation for clinical study is unwarranted given the results presented herein.
Journal Article
Tracing development of song memory with fMRI in zebra finches after a second tutoring experience
by
Kulkarni, Praveen P.
,
Petkova, Stela P.
,
Arya, Payal
in
59/36
,
631/378/1595
,
631/378/2629/2631
2023
Sensory experiences in early development shape higher cognitive functions such as language acquisition in humans and song learning in birds. Zebra finches (
Taeniopygia guttata
) sequentially exposed to two different song ‘tutors’ during the sensitive period in development are able to learn from their second tutor and eventually imitate aspects of his song, but the neural substrate involved in learning a second song is unknown. We used fMRI to examine neural activity associated with learning two songs sequentially. We found that acquisition of a second song changes lateralization of the auditory midbrain. Interestingly, activity in the caudolateral Nidopallium (NCL), a region adjacent to the secondary auditory cortex, was related to the fidelity of second-song imitation. These findings demonstrate that experience with a second tutor can permanently alter neural activity in brain regions involved in auditory perception and song learning.
Learning song from two ‘tutors’ at different points in development permanently alters neural activity in auditory processing and learning regions in zebra finches.
Journal Article
Insulin-like growth factor-2 does not improve behavioral deficits in mouse and rat models of Angelman Syndrome
by
Born, Heather A.
,
Berg, Elizabeth L.
,
Anderson, Anne E.
in
Alleles
,
Angelman Syndrome
,
Angelman Syndrome - drug therapy
2021
Background
Angelman Syndrome (AS) is a rare neurodevelopmental disorder for which there is currently no cure or effective therapeutic. Since the genetic cause of AS is known to be dysfunctional expression of the maternal allele of ubiquitin protein ligase E3A (
UBE3A
), several genetic animal models of AS have been developed. Both the
Ube3a
maternal deletion mouse and rat models of AS reliably demonstrate behavioral phenotypes of relevance to AS and therefore offer suitable in vivo systems in which to test potential therapeutics. One promising candidate treatment is insulin-like growth factor-2 (IGF-2), which has recently been shown to ameliorate behavioral deficits in the mouse model of AS and improve cognitive abilities across model systems.
Methods
We used both the
Ube3a
maternal deletion mouse and rat models of AS to evaluate the ability of IGF-2 to improve electrophysiological and behavioral outcomes.
Results
Acute systemic administration of IGF-2 had an effect on electrophysiological activity in the brain and on a metric of motor ability; however the effects were not enduring or extensive. Additional metrics of motor behavior, learning, ambulation, and coordination were unaffected and IGF-2 did not improve social communication, seizure threshold, or cognition.
Limitations
The generalizability of these results to humans is difficult to predict and it remains possible that dosing schemes (i.e., chronic or subchronic dosing), routes, and/or post-treatment intervals other than that used herein may show more efficacy.
Conclusions
Despite a few observed effects of IGF-2, our results taken together indicate that IGF-2 treatment does not profoundly improve behavioral deficits in mouse or rat models of AS. These findings shed cautionary light on the potential utility of acute systemic IGF-2 administration in the treatment of AS.
Journal Article
Developmental exposure to near roadway pollution produces behavioral phenotypes relevant to neurodevelopmental disorders in juvenile rats
by
Patten, Kelley T.
,
Petkova, Stela P.
,
Lein, Pamela J.
in
631/378/1595
,
692/699/476
,
Air pollution
2020
Epidemiological studies consistently implicate traffic-related air pollution (TRAP) and/or proximity to heavily trafficked roads as risk factors for developmental delays and neurodevelopmental disorders (NDDs); however, there are limited preclinical data demonstrating a causal relationship. To test the effects of TRAP, pregnant rat dams were transported to a vivarium adjacent to a major freeway tunnel system in northern California where they were exposed to TRAP drawn directly from the face of the tunnel or filtered air (FA). Offspring remained housed under the exposure condition into which they were born and were tested in a variety of behavioral assays between postnatal day 4 and 50. To assess the effects of near roadway exposure, offspring of dams housed in a standard research vivarium were tested at the laboratory. An additional group of dams was transported halfway to the facility and then back to the laboratory to control for the effect of potential transport stress. Near roadway exposure delayed growth and development of psychomotor reflexes and elicited abnormal activity in open field locomotion. Near roadway exposure also reduced isolation-induced 40-kHz pup ultrasonic vocalizations, with the TRAP group having the lowest number of call emissions. TRAP affected some components of social communication, evidenced by reduced neonatal pup ultrasonic calling and altered juvenile reciprocal social interactions. These findings confirm that living in close proximity to highly trafficked roadways during early life alters neurodevelopment.
Journal Article
Ictal vocalizations in the Scn1a+/− mouse model of Dravet syndrome
by
Arnold, Jonathon C.
,
Petkova, Stela P.
,
Anderson, Lyndsey L.
in
Acoustics
,
Animals
,
Convulsions & seizures
2023
Objective Ictal vocalizations have shown diagnostic utility in epilepsy patients. Audio recordings of seizures have also been used for seizure detection. The present study aimed to determine whether generalized tonic–clonic seizures in the Scn1a+/− mouse model of Dravet syndrome are associated with either audible mouse squeaks or ultrasonic vocalizations. Methods Acoustic recordings were captured from group‐housed Scn1a+/− mice undergoing video‐monitoring to quantify spontaneous seizure frequency. We generated audio clips (n = 129) during a generalized tonic–clonic seizure (GTCS) that included 30 seconds immediately prior to the GTCS (preictal) and 30 seconds following the conclusion of the seizure (postictal). Nonseizure clips (n = 129) were also exported from the acoustic recordings. A blinded reviewer manually reviewed the audio clips, and vocalizations were identified as either an audible (<20 kHz) mouse squeak or ultrasonic (>20 kHz). Results Spontaneous GTCS in Scn1a+/− mice were associated with a significantly higher number of total vocalizations. The number of audible mouse squeaks was significantly greater with GTCS activity. Nearly all (98%) the seizure clips contained ultrasonic vocalizations, whereas ultrasonic vocalizations were present in only 57% of nonseizure clips. The ultrasonic vocalizations emitted in the seizure clips were at a significantly higher frequency and were nearly twice as long in duration as those emitted in the nonseizure clips. Audible mouse squeaks were primarily emitted during the preictal phase. The greatest number of ultrasonic vocalizations was detected during the ictal phase. Significance Our study shows that ictal vocalizations are exhibited by Scn1a+/− mice. Quantitative audio analysis could be developed as a seizure detection tool for the Scn1a+/− mouse model of Dravet syndrome.
Journal Article
Cyclin D2-knock-out mice with attenuated dentate gyrus neurogenesis have robust deficits in long-term memory formation
2020
Neurobehavioral studies have produced contradictory findings concerning the function of neurogenesis in the adult dentate gyrus. Previous studies have proved inconsistent across several behavioral endpoints thought to be dependent on dentate neurogenesis, including memory acquisition, short-term and long-term retention of memory, pattern separation, and reversal learning. We hypothesized that the main function of dentate neurogenesis is long-term memory formation because we assumed that a newly formed and integrated neuron would have a long-term impact on the local neural network. We used a cyclin D2-knock-out (cyclin D2
−/−
) mouse model of endogenously deficient dentate neurogenesis to test this hypothesis. We found that cyclin D2
−/−
mice had robust and sustained loss of long-term memory in two separate behavioral tasks, Morris water maze (MWM) and touchscreen intermediate pattern separation. Moreover, after adjusting for differences in brain volumes determined by magnetic resonance (MR) imaging, reduced dentate neurogenesis moderately correlated with deficits in memory retention after 24 hours. Importantly, cyclin D2
−/−
mice did not show deficits in learning acquisition in a touchscreen paradigm of intermediate pattern separation or MWM platform location, indicating intact short-term memory. Further evaluation of cyclin D2
−/−
mice is necessary to confirm that deficits are specifically linked to dentate gyrus neurogenesis since cyclin D2
−/−
mice also have a reduced size of the olfactory bulb, hippocampus, cerebellum and cortex besides reduced dentate gyrus neurogenesis.
Journal Article
Gait as a Quantitative Translational Outcome Measure in Angelman Syndrome
2021
Angelman Syndrome (AS) is a genetic neurodevelopmental disorder characterized by developmental delay, lack of speech, seizures, intellectual disability, and walking and balance disorders. Recently, motor ability became an interesting outcome measure in AS, as it is broad including ataxia, hypotonia, delayed and abnormal walking and postural movements and affects nearly every individual with AS. We predict that gait presents a strong opportunity for rigorous, reliable, and quantitative metrics with direct translation to evaluate pharmacological, dietary, and genetic therapies. Numerous motoric deficits have been identified clinically. In this study, we used an innovative, automated gait analysis as well as gold standard motor behavioral assays to further delineate components of motor, coordination, balance, and gait impairments in an AS mouse model across development. Our study demonstrated marked global motoric deficits in AS mice, corroborating many previous reports. Uniquely, this is the first report of nuanced and pertinent aberrations in quantitative spatial and temporal components of gait between AS and wildtype littermate controls, that are analogous in AS individuals. These metrics were followed longitudinally to observe the progression of maladaptive gait in AS, a clinical phenotype. This has not been reported previously and contributes a substantial novel metric for therapeutic development. Taken together, these findings demonstrate the robust translational value in the study of nuanced motor outcomes, i.e., gait, for AS, as well as similar genetic syndromes, in the endeavor of therapeutic screening. Competing Interest Statement The authors have declared no competing interest.
An in vivo Cell-Based Delivery Platform for Zinc Finger Artificial Transcription Factors in Pre-clinical Animal Models
by
Beitnere, Ulrika
,
Anderson, Johnathan D.
,
Lee, Charles C.
in
Angelman Syndrome (AS)
,
Animal models
,
artificial transcription factor (ATF)
2022
Zinc finger (ZF), transcription activator-like effectors (TALE), and CRISPR/Cas9 therapies to regulate gene expression are becoming viable strategies to treat genetic disorders, although effective in vivo delivery systems for these proteins remain a major translational hurdle. We describe the use of a mesenchymal stem/stromal cell (MSC)-based delivery system for the secretion of a ZF protein (ZF-MSC) in transgenic mouse models and young rhesus monkeys. Secreted ZF protein from mouse ZF-MSC was detectable within the hippocampus 1 week following intracranial or cisterna magna (CM) injection. Secreted ZF activated the imprinted paternal Ube3a in a transgenic reporter mouse and ameliorated motor deficits in a Ube3a deletion Angelman Syndrome (AS) mouse. Intrathecally administered autologous rhesus MSCs were well-tolerated for 3 weeks following administration and secreted ZF protein was detectable within the cerebrospinal fluid (CSF), midbrain, and spinal cord. This approach is less invasive when compared to direct intracranial injection which requires a surgical procedure.
Journal Article