Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
185
result(s) for
"Petricca, F."
Sort by:
Results from 730 kg days of the CRESST-II Dark Matter search
by
Isaila, C.
,
Scholl, S.
,
Sivers, M. v.
in
Astronomy
,
Astrophysics and Cosmology
,
Calcium tungstates
2012
The CRESST-II cryogenic Dark Matter search, aiming at detection of WIMPs via elastic scattering off nuclei in CaWO
4
crystals, completed 730 kg days of data taking in 2011. We present the data collected with eight detector modules, each with a two-channel readout; one for a phonon signal and the other for coincidently produced scintillation light. The former provides a precise measure of the energy deposited by an interaction, and the ratio of scintillation light to deposited energy can be used to discriminate different types of interacting particles and thus to distinguish possible signal events from the dominant backgrounds.
Sixty-seven events are found in the acceptance region where a WIMP signal in the form of low energy nuclear recoils would be expected. We estimate background contributions to this observation from four sources: (1) “leakage” from the
e
/
γ
-band (2) “leakage” from the
α
-particle band (3) neutrons and (4)
206
Pb recoils from
210
Po decay. Using a maximum likelihood analysis, we find, at a statistical significance of more than 4
σ
, that these sources alone are not sufficient to explain the data. The addition of a signal due to scattering of relatively light WIMPs could account for this discrepancy, and we determine the associated WIMP parameters.
Journal Article
The COSINUS project: perspectives of a NaI scintillating calorimeter for dark matter search
2016
The R&D project COSINUS (Cryogenic Observatory for SIgnatures seen in Next-generation Underground Searches) aims to develop a cryogenic scintillating calorimeter using an undoped NaI-crystal as target for direct dark matter search. Dark matter particles interacting with the detector material generate both a phonon signal and scintillation light. While the phonon signal provides a precise determination of the deposited energy, the simultaneously measured scintillation light allows for particle identification on an event-by-event basis, a powerful tool to study material-dependent interactions, and to suppress backgrounds. Using the same target material as the DAMA/LIBRA collaboration, the COSINUS technique may offer a unique possibility to investigate and contribute information to the presently controversial situation in the dark matter sector. We report on the dedicated design planned for the NaI proof-of-principle detector and the objectives of using this detection technique in the light of direct dark matter detection.
Journal Article
The ν-cleus experiment: a gram-scale fiducial-volume cryogenic detector for the first detection of coherent neutrino–nucleus scattering
by
Gütlein, A.
,
Oberauer, L.
,
Schieck, J.
in
Astronomy
,
Astrophysics and Cosmology
,
Coherent scattering
2017
We discuss a small-scale experiment, called
ν
-cleus, for the first detection of coherent neutrino–nucleus scattering by probing nuclear-recoil energies down to the 10 eV regime. The detector consists of low-threshold CaWO
4
and Al
2
O
3
calorimeter arrays with a total mass of about 10 g and several cryogenic veto detectors operated at millikelvin temperatures. Realizing a fiducial volume and a multi-element target, the detector enables active discrimination of
γ
, neutron and surface backgrounds. A first prototype Al
2
O
3
device, operated above ground in a setup without shielding, has achieved an energy threshold of
∼
20
eV and further improvements are in reach. A sensitivity study for the detection of coherent neutrino scattering at nuclear power plants shows a unique discovery potential (5
σ
) within a measuring time of
≲
2
weeks. Furthermore, a site at a thermal research reactor and the use of a radioactive neutrino source are investigated. With this technology, real-time monitoring of nuclear power plants is feasible.
Journal Article
Results on light dark matter particles with a low-threshold CRESST-II detector
2016
The CRESST-II experiment uses cryogenic detectors to search for nuclear recoil events induced by the elastic scattering of dark matter particles in CaWO
4
crystals. Given the low energy threshold of our detectors in combination with light target nuclei, low mass dark matter particles can be probed with high sensitivity. In this letter we present the results from data of a single detector module corresponding to 52 kg live days. A blind analysis is carried out. With an energy threshold for nuclear recoils of 307 eV we substantially enhance the sensitivity for light dark matter. Thereby, we extend the reach of direct dark matter experiments to the sub- GeV/
c
2
region and demonstrate that the energy threshold is the key parameter in the search for low mass dark matter particles.
Journal Article
A low-threshold diamond cryogenic detector for sub-GeV dark matter searches
2022
In this work we report the realization of the first low-threshold cryogenic detector that uses diamond as absorber for astroparticle physics applications. We tested two 0.175 g CVD diamond samples, each instrumented with a W-TES. The sensors showed transitions at about 25 mK. We present the performance of the diamond detectors and we highlight the best performing one, where we obtained an energy threshold as low as 16.8 eV. This promising result lays the foundation for the use of diamond for different fields of applications where low threshold and excellent energy resolution are required, as i.e. light dark matter searches and BSM physics with coherent elastic neutrino nucleus scattering.
Journal Article
First results on low-mass dark matter from the CRESST-III experiment
2020
The CRESST experiment (Cryogenic Rare Even Search with Superconducting Thermometers), located at Laboratori Nazionali del Gran Sasso in Italy, searches for dark matter particles via their elastic scattering off nuclei in a target material. The CRESST target consists of scintillating CaWO4 crystals, which are operated as cryogenic calorimeters at millikelvin temperatures. Each interaction in the CaWO4 target crystal produces a phonon signal and a light signal that is measured by a second cryogenic calorimeter. Since the CRESST-II result in 2015, the experiment is leading the field of direct dark matter search for dark matter masses below 1.7 GeV/c2, extending the reach of direct searches to the sub-GeV/c2 mass region. For CRESST-III, whose Phase 1 started in July 2016, detectors have been optimized to reach the performance required to further probe the low-mass region with unprecedented sensitivity. In this contribution the achievements of the CRESST-III detectors will be discussed together with preliminary results and perspectives of Phase 1.
Journal Article
Simulation-based design study for the passive shielding of the COSINUS dark matter experiment
2022
The COSINUS (Cryogenic Observatory for SIgnatures seen in Next-generation Underground Searches) experiment aims at the detection of dark matter-induced recoils in sodium iodide (NaI) crystals operated as scintillating cryogenic calorimeters. The detection of both scintillation light and phonons allows performing an event-by-event signal to background discrimination, thus enhancing the sensitivity of the experiment. The choice of using NaI crystals is motivated by the goal of probing the long-standing DAMA/LIBRA results using the same target material. The construction of the experimental facility is foreseen to start by 2021 at the INFN Gran Sasso National Laboratory (LNGS) in Italy. It consists of a cryostat housing the target crystals shielded from the external radioactivity by a water tank acting, at the same time, as an active veto against cosmic ray-induced events. Taking into account both environmental radioactivity and intrinsic contamination of materials used for cryostat, shielding and infrastructure, we performed a careful background budget estimation. The goal is to evaluate the number of events that could mimic or interfere with signal detection while optimising the geometry of the experimental setup. In this paper we present the results of the detailed Monte Carlo simulations we performed, together with the final design of the setup that minimises the residual amount of background particles reaching the detector volume.
Journal Article
Water Cherenkov muon veto for the COSINUS experiment: design and simulation optimization
2024
COSINUS is a dark matter (DM) direct search experiment that uses sodium iodide (NaI) crystals as cryogenic calorimeters. Thanks to the low nuclear recoil energy threshold and event-by-event discrimination capability, COSINUS will address the long-standing DM claim made by the DAMA/LIBRA collaboration. The experiment is currently under construction at the Laboratori Nazionali del Gran Sasso, Italy, and employs a large cylindrical water tank as a passive shield to meet the required background rate. However, muon-induced neutrons can mimic a DM signal therefore requiring an active veto system, which is achieved by instrumenting the water tank with an array of photomultiplier tubes (PMTs). This study optimizes the number, arrangement, and trigger conditions of the PMTs as well as the size of an optically invisible region. The objective was to maximize the muon veto efficiency while minimizing the accidental trigger rate due to the ambient and instrumental background. The final configuration predicts a veto efficiency of 99.63 ± 0.16% and 44.4 ± 5.6% in the tagging of muon events and showers of secondary particles, respectively. The active veto will reduce the cosmogenic neutron background rate to 0.11 ± 0.02 cts
·
kg
-
1
·
year
-
1
,
corresponding to less than one background event in the region of interest for the whole COSINUS-1
π
exposure of 1000 kg
·
days.
Journal Article
Results on MeV-scale dark matter from a gram-scale cryogenic calorimeter operated above ground
2017
Models for light dark matter particles with masses below 1 GeV/c [Formula omitted] are a natural and well-motivated alternative to so-far unobserved weakly interacting massive particles. Gram-scale cryogenic calorimeters provide the required detector performance to detect these particles and extend the direct dark matter search program of CRESST. A prototype 0.5 g sapphire detector developed for the [Formula omitted]-cleus experiment has achieved an energy threshold of [Formula omitted] eV. This is one order of magnitude lower than for previous devices and independent of the type of particle interaction. The result presented here is obtained in a setup above ground without significant shielding against ambient and cosmogenic radiation. Although operated in a high-background environment, the detector probes a new range of light-mass dark matter particles previously not accessible by direct searches. We report the first limit on the spin-independent dark matter particle-nucleon cross section for masses between 140 and 500 MeV/c [Formula omitted].
Journal Article
Exploring CEνNS with NUCLEUS at the Chooz nuclear power plant
2019
Coherent elastic neutrino–nucleus scattering (CEνNS) offers a unique way to study neutrino properties and to search for new physics beyond the Standard Model. Nuclear reactors are promising sources to explore this process at low energies since they deliver large fluxes of anti-neutrinos with typical energies of a few MeV. In this paper, a new-generation experiment to study CEνNS is described. The NUCLEUS experiment will use cryogenic detectors which feature an unprecedentedly low-energy threshold and a time response fast enough to be operated under above-ground conditions. Both sensitivity to low-energy nuclear recoils and a high event rate tolerance are stringent requirements to measuring CEνNS of reactor anti-neutrinos. A new experimental site, the Very-Near-Site (VNS), at the Chooz nuclear power plant in France is described. The VNS is located between the two 4.25 GWth reactor cores and matches the requirements of NUCLEUS. First results of on-site measurements of neutron and muon backgrounds, the expected dominant background contributions, are given. In this paper a preliminary experimental set-up with dedicated active and passive background reduction techniques and first background estimations are presented. Furthermore, the feasibility to operate the detectors in coincidence with an active muon veto at shallow overburden is studied. The paper concludes with a sensitivity study pointing out the physics potential of NUCLEUS at the Chooz nuclear power plant.
Journal Article