Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
87
result(s) for
"Petrova, Tatiana V"
Sort by:
High-resolution 3D analysis of mouse small-intestinal stroma
by
Petrova, Tatiana V
,
Bernier-Latmani, Jeremiah
in
631/1647/664/1257
,
631/250/2503
,
631/443/592/16
2016
This protocol describes how to perform whole-mount immunostaining and imaging on adult mouse small-intestinal villi. All gut cell types can be seen at high resolution and in 3D without the need for image reconstruction.
Here we detail a protocol for whole-mount immunostaining of mouse small-intestinal villi that can be used to generate high-resolution 3D images of all gut cell types, including blood and lymphatic vessel cells, neurons, smooth muscle cells, fibroblasts and immune cells. The procedure describes perfusion, fixation, dissection, immunostaining, mounting, clearing, confocal imaging and quantification, using intestinal vasculature as an example. As intestinal epithelial cells prevent visualization with some antibodies, we also provide an optional protocol to remove these cells before fixation. In contrast to alternative current techniques, our protocol enables the entire villus to be visualized with increased spatial resolution of cell location, morphology and cell–cell interactions, thus allowing for easy quantification of phenotypes. The technique, which takes 7 d from mouse dissection to microscopic examination, will be useful for researchers who are interested in most aspects of intestinal biology, including mucosal immunology, infection, nutrition, cancer biology and intestinal microbiota.
Journal Article
STING activation of tumor endothelial cells initiates spontaneous and therapeutic antitumor immunity
by
Martinon, Fabio
,
Demaria, Olivier
,
Coso, Sanja
in
Animals
,
Antigens, Neoplasm - immunology
,
Biological Sciences
2015
Spontaneous CD8 T-cell responses occur in growing tumors but are usually poorly effective. Understanding the molecular and cellular mechanisms that drive these responses is of major interest as they could be exploited to generate a more efficacious antitumor immunity. As such, stimulator of IFN genes (STING), an adaptor molecule involved in cytosolic DNA sensing, is required for the induction of antitumor CD8 T responses in mouse models of cancer. Here, we find that enforced activation of STING by intratumoral injection of cyclic dinucleotide GMP-AMP (cGAMP), potently enhanced antitumor CD8 T responses leading to growth control of injected and contralateral tumors in mouse models of melanoma and colon cancer. The ability of cGAMP to trigger antitumor immunity was further enhanced by the blockade of both PD1 and CTLA4. The STING-dependent antitumor immunity, either induced spontaneously in growing tumors or induced by intratumoral cGAMP injection was dependent on type I IFNs produced in the tumor microenvironment. In response to cGAMP injection, both in the mouse melanoma model and an ex vivo model of cultured human melanoma explants, the principal source of type I IFN was not dendritic cells, but instead endothelial cells. Similarly, endothelial cells but not dendritic cells were found to be the principal source of spontaneously induced type I IFNs in growing tumors. These data identify an unexpected role of the tumor vasculature in the initiation of CD8 T-cell antitumor immunity and demonstrate that tumor endothelial cells can be targeted for immunotherapy of melanoma.
Journal Article
ADAMTS18+ villus tip telocytes maintain a polarized VEGFA signaling domain and fenestrations in nutrient-absorbing intestinal blood vessels
2022
The small intestinal villus tip is the first point of contact for lumen-derived substances including nutrients and microbial products. Electron microscopy studies from the early 1970s uncovered unusual spatial organization of small intestinal villus tip blood vessels: their exterior, epithelial-facing side is fenestrated, while the side facing the villus stroma is non-fenestrated, covered by pericytes and harbors endothelial nuclei. Such organization optimizes the absorption process, however the molecular mechanisms maintaining this highly specialized structure remain unclear. Here we report that perivascular LGR5
+
villus tip telocytes (VTTs) are necessary for maintenance of villus tip endothelial cell polarization and fenestration by sequestering VEGFA signaling. Mechanistically, unique VTT expression of the protease ADAMTS18 is necessary for VEGFA signaling sequestration through limiting fibronectin accumulation. Therefore, we propose a model in which LGR5
+
ADAMTS18
+
telocytes are necessary to maintain a “just-right” level and location of VEGFA signaling in intestinal villus blood vasculature to ensure on one hand the presence of sufficient endothelial fenestrae, while avoiding excessive leakiness of the vessels and destabilization of villus tip epithelial structures.
The molecular mechanisms ensuring the specialized structure of small intestinal villus tip blood vessels are incompletely understood. Here the authors show that ADAMTS18
+
telocytes maintain a “just-right” level and location of VEGFA signaling on intestinal villus blood vessels, thereby ensuring the presence of endothelial fenestrae for nutrient absorption, while avoiding excessive leakiness and destabilization of villus tip epithelial structures.
Journal Article
Antiangiogenic immunotherapy suppresses desmoplastic and chemoresistant intestinal tumors in mice
by
Delorenzi, Mauro
,
Wetterwald, Laureline
,
Kim, Jaeryung
in
Adenomatous polyposis coli
,
Analysis
,
Angiogenesis
2020
Mutations in APC promote colorectal cancer (CRC) progression through uncontrolled WNT signaling. Patients with desmoplastic CRC have a significantly worse prognosis and do not benefit from chemotherapy, but the mechanisms underlying the differential responses of APC-mutant CRCs to chemotherapy are not well understood. We report that expression of the transcription factor prospero homeobox 1 (PROX1) was reduced in desmoplastic APC-mutant human CRCs. In genetic Apc-mutant mouse models, loss of Prox1 promoted the growth of desmoplastic, angiogenic, and immunologically silent tumors through derepression of Mmp14. Although chemotherapy inhibited Prox1-proficient tumors, it promoted further stromal activation, angiogenesis, and invasion in Prox1-deficient tumors. Blockade of vascular endothelial growth factor A (VEGFA) and angiopoietin-2 (ANGPT2) combined with CD40 agonistic antibodies promoted antiangiogenic and immunostimulatory reprogramming of Prox1-deficient tumors, destroyed tumor fibrosis, and unleashed T cell-mediated killing of cancer cells. These results pinpoint the mechanistic basis of chemotherapy-induced hyperprogression and illustrate a therapeutic strategy for chemoresistant and desmoplastic CRCs.
Journal Article
FOXC2 and fluid shear stress stabilize postnatal lymphatic vasculature
by
Martinez-Corral, Inés
,
Kimura, Wataru
,
Mäkinen, Taija
in
Adaptor Proteins, Signal Transducing - physiology
,
Agreements
,
Animals
2015
Biomechanical forces, such as fluid shear stress, govern multiple aspects of endothelial cell biology. In blood vessels, disturbed flow is associated with vascular diseases, such as atherosclerosis, and promotes endothelial cell proliferation and apoptosis. Here, we identified an important role for disturbed flow in lymphatic vessels, in which it cooperates with the transcription factor FOXC2 to ensure lifelong stability of the lymphatic vasculature. In cultured lymphatic endothelial cells, FOXC2 inactivation conferred abnormal shear stress sensing, promoting junction disassembly and entry into the cell cycle. Loss of FOXC2-dependent quiescence was mediated by the Hippo pathway transcriptional coactivator TAZ and, ultimately, led to cell death. In murine models, inducible deletion of Foxc2 within the lymphatic vasculature led to cell-cell junction defects, regression of valves, and focal vascular lumen collapse, which triggered generalized lymphatic vascular dysfunction and lethality. Together, our work describes a fundamental mechanism by which FOXC2 and oscillatory shear stress maintain lymphatic endothelial cell quiescence through intercellular junction and cytoskeleton stabilization and provides an essential link between biomechanical forces and endothelial cell identity that is necessary for postnatal vessel homeostasis. As FOXC2 is mutated in lymphedema-distichiasis syndrome, our data also underscore the role of impaired mechanotransduction in the pathology of this hereditary human disease.
Journal Article
Shear stimulation of FOXC1 and FOXC2 differentially regulates cytoskeletal activity during lymphatic valve maturation
2020
Mutations in the transcription factor FOXC2 are predominately associated with lymphedema. Herein, we demonstrate a key role for related factor FOXC1, in addition to FOXC2, in regulating cytoskeletal activity in lymphatic valves. FOXC1 is induced by laminar, but not oscillatory, shear and inducible, endothelial-specific deletion impaired postnatal lymphatic valve maturation in mice. However, deletion of Foxc2 induced valve degeneration, which is exacerbated in Foxc1; Foxc2 mutants. FOXC1 knockdown (KD) in human lymphatic endothelial cells increased focal adhesions and actin stress fibers whereas FOXC2-KD increased focal adherens and disrupted cell junctions, mediated by increased ROCK activation. ROCK inhibition rescued cytoskeletal or junctional integrity changes induced by inactivation of FOXC1 and FOXC2 invitro and vivo respectively, but only ameliorated valve degeneration in Foxc2 mutants. These results identify both FOXC1 and FOXC2 as mediators of mechanotransduction in the postnatal lymphatic vasculature and posit cytoskeletal signaling as a therapeutic target in lymphatic pathologies.
Journal Article
GATA2 is required for lymphatic vessel valve development and maintenance
by
Miura, Naoyuki
,
Chong, Chan-Eng
,
Hahn, Christopher N.
in
Animals
,
Biomedical research
,
Cardiovascular disease
2015
Heterozygous germline mutations in the zinc finger transcription factor GATA2 have recently been shown to underlie a range of clinical phenotypes, including Emberger syndrome, a disorder characterized by lymphedema and predisposition to myelodysplastic syndrome/acute myeloid leukemia (MDS/AML). Despite well-defined roles in hematopoiesis, the functions of GATA2 in the lymphatic vasculature and the mechanisms by which GATA2 mutations result in lymphedema have not been characterized. Here, we have provided a molecular explanation for lymphedema predisposition in a subset of patients with germline GATA2 mutations. Specifically, we demonstrated that Emberger-associated GATA2 missense mutations result in complete loss of GATA2 function, with respect to the capacity to regulate the transcription of genes that are important for lymphatic vessel valve development. We identified a putative enhancer element upstream of the key lymphatic transcriptional regulator PROX1 that is bound by GATA2, and the transcription factors FOXC2 and NFATC1. Emberger GATA2 missense mutants had a profoundly reduced capacity to bind this element. Conditional Gata2 deletion in mice revealed that GATA2 is required for both development and maintenance of lymphovenous and lymphatic vessel valves. Together, our data unveil essential roles for GATA2 in the lymphatic vasculature and explain why a select catalogue of human GATA2 mutations results in lymphedema.
Journal Article
Loss of vascular endothelial notch signaling promotes spontaneous formation of tertiary lymphoid structures
2022
Tertiary lymphoid structures (TLS) are lymph node-like immune cell clusters that emerge during chronic inflammation in non-lymphoid organs like the kidney, but their origin remains not well understood. Here we show, using conditional deletion strategies of the canonical Notch signaling mediator
Rbpj
, that loss of endothelial Notch signaling in adult mice induces the spontaneous formation of bona fide TLS in the kidney, liver and lung, based on molecular, cellular and structural criteria. These TLS form in a stereotypical manner around parenchymal arteries, while secondary lymphoid structures remained largely unchanged. This effect is mediated by endothelium of blood vessels, but not lymphatics, since a lymphatic endothelial-specific targeting strategy did not result in TLS formation, and involves loss of arterial specification and concomitant acquisition of a high endothelial cell phenotype, as shown by transcriptional analysis of kidney endothelial cells. This indicates a so far unrecognized role for vascular endothelial cells and Notch signaling in TLS initiation.
Loss of canonical Notch signaling in vascular endothelial cells induces spontaneous formation of proto-typical tertiary lymphoid structures in mouse kidney, liver and lungs, which form around central arteries that acquire a high endothelial cell signature
Journal Article
Microenvironmental regulation of tumour angiogenesis
by
Biziato, Daniela
,
De Palma, Michele
,
Petrova, Tatiana V.
in
631/67/2328
,
631/67/327
,
631/67/580
2017
Key Points
Malignant progression of benign tumours is typically associated with an angiogenic switch — the transition from a quiescent to a proliferative vasculature. The
de novo
recruitment of various innate immune cells was shown to trigger the angiogenic switch in mouse tumour models.
Macrophages are important pro-angiogenic cells in the tumour microenvironment. They promote tumour angiogenesis mainly by secreting pro-angiogenic growth factors and facilitating the degradation of the perivascular extracellular matrix.
Neutrophils and immature myeloid cells have important roles during the initial angiogenic switch in experimental tumour models. They were also found to sustain tumour revascularization in the context of anti-angiogenic therapy.
B cells and T cells may either promote or limit tumour angiogenesis depending on the specific subtype and activation state. In the context of immunotherapy, they may induce the regression of tumour blood vessels.
Tumour blood vessels typically display scant pericyte coverage. However, pericytes provide pro-survival cues to angiogenic blood vessels, and their pharmacological targeting improves tumour response to anti-angiogenic therapy.
Cancer-associated fibroblasts produce the extracellular matrix and are an important source of pro-angiogenic factors and myeloid cell chemoattractants in the tumour microenvironment.
Adipocytes stimulate peri-tumoural angiogenesis by secreting pro-inflammatory and pro-angiogenic cytokines, and by releasing fatty acids that are consumed by angiogenic endothelial cells.
The extracellular matrix conveys both pro-angiogenic and angiostatic signals to tumour blood vessels.
The metabolic properties of cancer cells and tumour-associated stromal cells influence angiogenesis in many ways (for example, by regulating glucose bioavailability to angiogenic blood vessels).
Vascular heterogeneity is a hallmark of cancer and is determined by multiple factors, including the specific organ and tissue in which the tumour arises, the composition of tumour-associated stromal cells, as well as the nature, diversity and relative abundance of pro- and anti-angiogenic mediators.
Tumour-associated stromal cells modulate tumour responses to anti-angiogenic therapy.
This Review discusses the extrinsic regulation of angiogenesis by the tumour microenvironment, highlighting potential vulnerabilities that could be targeted to improve the applicability and reach of anti-angiogenic cancer therapies.
Tumours display considerable variation in the patterning and properties of angiogenic blood vessels, as well as in their responses to anti-angiogenic therapy. Angiogenic programming of neoplastic tissue is a multidimensional process regulated by cancer cells in concert with a variety of tumour-associated stromal cells and their bioactive products, which encompass cytokines and growth factors, the extracellular matrix and secreted microvesicles. In this Review, we discuss the extrinsic regulation of angiogenesis by the tumour microenvironment, highlighting potential vulnerabilities that could be targeted to improve the applicability and reach of anti-angiogenic cancer therapies.
Journal Article
Stability and function of adult vasculature is sustained by Akt/Jagged1 signalling axis in endothelium
2016
The signalling pathways operational in quiescent, post-development vasculature remain enigmatic. Here we show that unlike neovascularization, endothelial Akt signalling in established vasculature is crucial not for endothelial cell (EC) survival, but for sustained interactions with pericytes and vascular smooth muscle cells (VSMCs) regulating vascular stability and function. Inducible endothelial-specific Akt1 deletion in adult global Akt2KO mice triggers progressive VSMC apoptosis. In hearts, this causes a loss of arteries and arterioles and, despite a high capillary density, diminished vascular patency and severe cardiac dysfunction. Similarly, endothelial Akt deletion induces retinal VSMC loss and basement membrane deterioration resulting in vascular regression and retinal atrophy. Mechanistically, the Akt/mTOR axis controls endothelial Jagged1 expression and, thereby, Notch signalling regulating VSMC maintenance. Jagged1 peptide treatment of Akt1ΔEC;Akt2KO mice and Jagged1 re-expression in Akt-deficient endothelium restores VSMC coverage. Thus, sustained endothelial Akt1/2 signalling is critical in maintaining vascular stability and homeostasis, thereby preserving tissue and organ function.
The Akt pathway integrates multiple signals, but whether it affects vasculature function is debatable. Here the authors show that Akt pathway shutdown in adult mouse endothelium causes destabilization of vasculature leading to cardiac and retinal dysfunction, due to decreased levels of Jagged1 and impaired Notch signaling.
Journal Article