Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
27
result(s) for
"Petty, Tom J."
Sort by:
Identification of Site-Specific Adaptations Conferring Increased Neural Cell Tropism during Human Enterovirus 71 Infection
2012
Enterovirus 71 (EV71) is one of the most virulent enteroviruses, but the specific molecular features that enhance its ability to disseminate in humans remain unknown. We analyzed the genomic features of EV71 in an immunocompromised host with disseminated disease according to the different sites of infection. Comparison of five full-length genomes sequenced directly from respiratory, gastrointestinal, nervous system, and blood specimens revealed three nucleotide changes that occurred within a five-day period: a non-conservative amino acid change in VP1 located within the BC loop (L97R), a region considered as an immunogenic site and possibly important in poliovirus host adaptation; a conservative amino acid substitution in protein 2B (A38V); and a silent mutation in protein 3D (L175). Infectious clones were constructed using both BrCr (lineage A) and the clinical strain (lineage C) backgrounds containing either one or both non-synonymous mutations. In vitro cell tropism and competition assays revealed that the VP1₉₇ Leu to Arg substitution within the BC loop conferred a replicative advantage in SH-SY5Y cells of neuroblastoma origin. Interestingly, this mutation was frequently associated in vitro with a second non-conservative mutation (E167G or E167A) in the VP1 EF loop in neuroblastoma cells. Comparative models of these EV71 VP1 variants were built to determine how the substitutions might affect VP1 structure and/or interactions with host cells and suggest that, while no significant structural changes were observed, the substitutions may alter interactions with host cell receptors. Taken together, our results show that the VP1 BC loop region of EV71 plays a critical role in cell tropism independent of EV71 lineage and, thus, may have contributed to dissemination and neurotropism in the immunocompromised patient.
Journal Article
Identification of a miRNA multi-targeting therapeutic strategy in glioblastoma
2023
Glioblastoma (GBM) is a deadly and the most common primary brain tumor in adults. Due to their regulation of a high number of mRNA transcripts, microRNAs (miRNAs) are key molecules in the control of biological processes and are thereby promising therapeutic targets for GBM patients. In this regard, we recently reported miRNAs as strong modulators of GBM aggressiveness. Here, using an integrative and comprehensive analysis of the TCGA database and the transcriptome of GBM biopsies, we identified three critical and clinically relevant miRNAs for GBM, miR-17-3p, miR-222, and miR-340. In addition, we showed that the combinatorial modulation of three of these miRNAs efficiently inhibited several biological processes in patient-derived GBM cells of all these three GBM subtypes (Mesenchymal, Proneural, Classical), induced cell death, and delayed tumor growth in a mouse tumor model. Finally, in a doxycycline-inducible model, we observed a significant inhibition of GBM stem cell viability and a significant delay of orthotopic tumor growth. Collectively, our results reveal, for the first time, the potential of miR-17-3p, miR-222 and miR-340 multi-targeting as a promising therapeutic strategy for GBM patients.
Journal Article
Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks
by
DiTullio Jr, Richard A.
,
Petty, Tom J.
,
Stavridi, Elena S.
in
Amino Acid Sequence
,
Binding Sites
,
Biological and medical sciences
2004
The mechanisms by which eukaryotic cells sense DNA double-strand breaks (DSBs) in order to initiate checkpoint responses are poorly understood. 53BP1 is a conserved checkpoint protein with properties of a DNA DSB sensor
1
,
2
,
3
,
4
,
5
. Here, we solved the structure of the domain of 53BP1 that recruits it to sites of DSBs. This domain consists of two tandem tudor folds with a deep pocket at their interface formed by residues conserved in the budding yeast Rad9 and fission yeast Rhp9/Crb2 orthologues.
In vitro
, the 53BP1 tandem tudor domain bound histone H3 methylated on Lys 79 using residues that form the walls of the pocket; these residues were also required for recruitment of 53BP1 to DSBs. Suppression of DOT1L, the enzyme that methylates Lys 79 of histone H3, also inhibited recruitment of 53BP1 to DSBs. Because methylation of histone H3 Lys 79 was unaltered in response to DNA damage, we propose that 53BP1 senses DSBs indirectly through changes in higher-order chromatin structure that expose the 53BP1 binding site.
Journal Article
An induced fit mechanism regulates p53 DNA binding kinetics to confer sequence specificity
2011
The
p53
tumour suppressor gene, the most frequently mutated gene in human cancer, encodes a transcription factor that contains sequence‐specific DNA binding and homo‐tetramerization domains. Interestingly, the affinities of p53 for specific and non‐specific DNA sites differ by only one order of magnitude, making it hard to understand how this protein recognizes its specific DNA targets
in vivo
. We describe here the structure of a p53 polypeptide containing both the DNA binding and oligomerization domains in complex with DNA. The structure reveals that sequence‐specific DNA binding proceeds via an induced fit mechanism that involves a conformational switch in loop L1 of the p53 DNA binding domain. Analysis of loop L1 mutants demonstrated that the conformational switch allows DNA binding off‐rates to be regulated independently of affinities. These results may explain the universal prevalence of conformational switching in sequence‐specific DNA binding proteins and suggest that proteins like p53 rely more on differences in binding off‐rates, than on differences in affinities, to recognize their specific DNA sites.
This crystal structure of the p53 DNA binding and homo‐tetramerization domains identifies a conformational change involved in an induced fit mechanism of binding to DNA and demonstrates that binding specificity is determined not by affinity but by the dissociation rate of the transcription factor.
Journal Article
Clinical features and viral kinetics in a rapidly cured patient with Ebola virus disease: a case report
by
Kaiser, Laurent
,
Yerly, Sabine
,
Dayer, Julie-Anne
in
Adult
,
Amides - therapeutic use
,
Antiviral Agents - therapeutic use
2015
A detailed description of viral kinetics, duration of virus shedding, and intraviral evolution in different body sites is warranted to understand Ebola virus pathogenesis. Patients with Ebola virus infections admitted to university hospitals provide a unique opportunity to do such in-depth virological investigations. We describe the clinical, biological, and virological follow-up of a case of Ebola virus disease.
A 43-year-old medical doctor who contracted an Ebola virus infection in Sierra Leone on Nov 16, 2014 (day 1), was airlifted to Geneva University Hospitals, Geneva, Switzerland, on day 5 after disease onset. The patient received an experimental antiviral treatment of monoclonal antibodies (ZMAb) and favipiravir. We monitored daily viral load kinetics, estimated viral clearance, calculated the half-life of the virus in plasma, and analysed the viral genome via high-throughput sequencing, in addition to clinical and biological signs.
The patient recovered rapidly, despite an initial high viral load (about 1 × 107 RNA copies per mL 24 h after onset of fever). We noted a two-phase viral decay. The virus half-life decreased from about 26 h to 9·5 h after the experimental antiviral treatment. Compared with a consensus sequence of June 18, 2014, the isolate that infected this patient displayed only five synonymous nucleotide substitutions on the full genome (4901A→C, 7837C→T, 8712A→G, 9947T→C, 16201T→C) despite 5 months of human-to-human transmission.
This study emphasises the importance of virological investigations to fully understand the course of Ebola virus disease and adaptation of the virus. Whether the viral decay was caused by the effects of the immune response alone, an additional benefit from the antiviral treatment, or a combination of both is unclear. In-depth virological analysis and randomised controlled trials are needed before any conclusion on the potential effect of antiviral treatment can be drawn.
Geneva University Hospitals, Swiss Office of Public Health, Swiss Agency for Development and Cooperation, and Swiss National Science Foundation.
Journal Article
Structural Basis of Transcriptional Gene Silencing Mediated by Arabidopsis MOM1
by
Gabus, Caroline
,
Broger, Larissa
,
Petty, Tom J.
in
Amino Acid Sequence
,
Arabidopsis - chemistry
,
Arabidopsis - genetics
2012
Shifts between epigenetic states of transcriptional activity are typically correlated with changes in epigenetic marks. However, exceptions to this rule suggest the existence of additional, as yet uncharacterized, layers of epigenetic regulation. MOM1, a protein of 2,001 amino acids that acts as a transcriptional silencer, represents such an exception. Here we define the 82 amino acid domain called CMM2 (Conserved MOM1 Motif 2) as a minimal MOM1 fragment capable of transcriptional regulation. As determined by X-ray crystallography, this motif folds into an unusual hendecad-based coiled-coil. Structure-based mutagenesis followed by transgenic complementation tests in plants demonstrate that CMM2 and its dimerization are effective for transcriptional suppression at chromosomal loci co-regulated by MOM1 and the siRNA pathway but not at loci controlled by MOM1 in an siRNA-independent fashion. These results reveal a surprising separation of epigenetic activities that enable the single, large MOM1 protein to coordinate cooperating mechanisms of epigenetic regulation.
Journal Article
Molecular Epidemiology of Human Rhinoviruses and Enteroviruses Highlights Their Diversity in Sub-Saharan Africa
2015
Human rhinoviruses (HRVs) and enteroviruses (HEVs) belong to the Enterovirus genus and are the most frequent cause of infection worldwide, but data on their molecular epidemiology in Africa are scarce. To understand HRV and HEV molecular epidemiology in this setting, we enrolled febrile pediatric patients participating in a large prospective cohort assessing the causes of fever in Tanzanian children. Naso/oropharyngeal swabs were systematically collected and tested by real-time RT-PCR for HRV and HEV. Viruses from positive samples were sequenced and phylogenetic analyses were then applied to highlight the HRV and HEV types as well as recombinant or divergent strains. Thirty-eight percent (378/1005) of the enrolled children harboured an HRV or HEV infection. Although some types were predominant, many distinct types were co-circulating, including a vaccinal poliovirus, HEV-A71 and HEV-D68. Three HRV-A recombinants were identified: HRV-A36/HRV-A67, HRV-A12/HRV-A67 and HRV-A96/HRV-A61. Four divergent HRV strains were also identified: one HRV-B strain and three HRV-C strains. This is the first prospective study focused on HRV and HEV molecular epidemiology in sub-Saharan Africa. This systematic and thorough large screening with careful clinical data management confirms the wide genomic diversity of these viruses, brings new insights about their evolution and provides data about associated symptoms.
Journal Article
E119D Neuraminidase Mutation Conferring Pan-Resistance to Neuraminidase Inhibitors in an A(H1N1)pdm09 Isolate From a Stem-Cell Transplant Recipient
by
Bouhy, Xavier
,
Zdobnov, Evgeny
,
Kaiser, Laurent
in
Antiviral Agents - pharmacology
,
Drug Resistance, Viral - genetics
,
Enzyme Inhibitors - pharmacology
2015
Background. An influenza A(H1N1) pdm09 infection was diagnosed in a hematopoietic stem cell transplant recipient during conditioning regimen. He was treated with oral oseltamivir, later combined with intravenous zanamivir. The H275Y neuraminidase (NA) mutation was first detected, and an E119D NA mutation was identified during zanamivir therapy. Methods. Recombinant wild-type (WT) E119D and E119D/H275Y A(H1N1) pdm09 NA variants were generated by reverse genetics. Susceptibility to NA inhibitors (NAIs) was evaluated with a fluorometric assay using the 2'-(4-methylumbelliferyli-α-D-N-acetylneuraminic acid (MUNANA) substrate. Susceptibility to favipiravir (T-705) was assessed using plaque reduction assays. The NA affinity and velocity values were determined with NA enzymatic studies. Results. We identified an influenza A(H1N1)pdm09 E119D mutant that exhibited a marked increase in the 50% inhibitory concentrations against all tested NAIs (827-, 25-, 286-, and 702-fold for zanamivir, oseltamivir, peramivir, and laninamivir, respectively). The double E119D/H275Y mutation further increased oseltamivir and peramivir 50% inhibitory concentrations by 790- and >5000-fold, respectively, compared with the WT. The mutant viruses remained susceptible to favipiravir. The NA affinity and velocity values of the E119D variant decreased by 8.1-fold and 4.5-fold, respectively, compared with the WT. Conclusions. The actual emergence of a single NA mutation conferring pan-NAI resistance in the clinical setting reinforces the pressing need to develop new anti-influenza strategies.
Journal Article