Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
67
result(s) for
"Pfaender, Stephanie"
Sort by:
Inactivation of Severe Acute Respiratory Syndrome Coronavirus 2 by WHO-Recommended Hand Rub Formulations and Alcohols
2020
Infection control instructions call for use of alcohol-based hand rub solutions to inactivate severe acute respiratory syndrome coronavirus 2. We determined the virucidal activity of World Health Organization-recommended hand rub formulations, at full strength and multiple dilutions, and of the active ingredients. All disinfectants demonstrated efficient virus inactivation.
Journal Article
Rapid reconstruction of SARS-CoV-2 using a synthetic genomics platform
2020
Reverse genetics has been an indispensable tool to gain insights into viral pathogenesis and vaccine development. The genomes of large RNA viruses, such as those from coronaviruses, are cumbersome to clone and manipulate in
Escherichia coli
owing to the size and occasional instability of the genome
1
–
3
. Therefore, an alternative rapid and robust reverse-genetics platform for RNA viruses would benefit the research community. Here we show the full functionality of a yeast-based synthetic genomics platform to genetically reconstruct diverse RNA viruses, including members of the
Coronaviridae
,
Flaviviridae
and
Pneumoviridae
families. Viral subgenomic fragments were generated using viral isolates, cloned viral DNA, clinical samples or synthetic DNA, and these fragments were then reassembled in one step in
Saccharomyces cerevisiae
using transformation-associated recombination cloning to maintain the genome as a yeast artificial chromosome. T7 RNA polymerase was then used to generate infectious RNA to rescue viable virus. Using this platform, we were able to engineer and generate chemically synthesized clones of the virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
4
, which has caused the recent pandemic of coronavirus disease (COVID-19), in only a week after receipt of the synthetic DNA fragments. The technical advance that we describe here facilitates rapid responses to emerging viruses as it enables the real-time generation and functional characterization of evolving RNA virus variants during an outbreak.
A yeast-based synthetic genomics platform is used to reconstruct and characterize large RNA viruses from synthetic DNA fragments; this technique will facilitate the rapid analysis of RNA viruses, such as SARS-CoV-2, during an outbreak.
Journal Article
Nanoscale copper and silver thin film systems display differences in antiviral and antibacterial properties
by
Meister, Toni Luise
,
Pfaender, Stephanie
,
Köller, Manfred
in
639/301
,
692/699/255
,
Anti-Bacterial Agents - chemistry
2022
The current Coronavirus Disease 19 (COVID-19) pandemic has exemplified the need for simple and efficient prevention strategies that can be rapidly implemented to mitigate infection risks. Various surfaces have a long history of antimicrobial properties and are well described for the prevention of bacterial infections. However, their effect on many viruses has not been studied in depth. In the context of COVID-19, several surfaces, including copper (Cu) and silver (Ag) coatings have been described as efficient antiviral measures that can easily be implemented to slow viral transmission. In this study, we detected antiviral properties against Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) on surfaces, which were coated with Cu by magnetron sputtering as thin Cu films or as Cu/Ag ultrathin bimetallic nanopatches. However, no effect of Ag on viral titers was observed, in clear contrast to its well-known antibacterial properties. Further enhancement of Ag ion release kinetics based on an electrochemical sacrificial anode mechanism did not increase antiviral activity. These results clearly demonstrate that Cu and Ag thin film systems display significant differences in antiviral and antibacterial properties which need to be considered upon implementation.
Journal Article
In Vitro Lung Models and Their Application to Study SARS-CoV-2 Pathogenesis and Disease
by
Klöhn, Mara
,
Pfaender, Stephanie
,
Heinen, Natalie
in
Animals
,
Cell culture
,
Cell Culture Techniques - methods
2021
SARS-CoV-2 has spread across the globe with an astonishing velocity and lethality that has put scientist and pharmaceutical companies worldwide on the spot to develop novel treatment options and reliable vaccination for billions of people. To combat its associated disease COVID-19 and potentially newly emerging coronaviruses, numerous pre-clinical cell culture techniques have progressively been used, which allow the study of SARS-CoV-2 pathogenesis, basic replication mechanisms, and drug efficiency in the most authentic context. Hence, this review was designed to summarize and discuss currently used in vitro and ex vivo cell culture systems and will illustrate how these systems will help us to face the challenges imposed by the current SARS-CoV-2 pandemic.
Journal Article
Determination of host proteins composing the microenvironment of coronavirus replicase complexes by proximity-labeling
by
Stoffel, Michael H
,
Braga Lagache, Sophie
,
Pfaender, Stephanie
in
Animals
,
Autophagy
,
Bioinformatics
2019
Positive-sense RNA viruses hijack intracellular membranes that provide niches for viral RNA synthesis and a platform for interactions with host proteins. However, little is known about host factors at the interface between replicase complexes and the host cytoplasm. We engineered a biotin ligase into a coronaviral replication/transcription complex (RTC) and identified >500 host proteins constituting the RTC microenvironment. siRNA-silencing of each RTC-proximal host factor demonstrated importance of vesicular trafficking pathways, ubiquitin-dependent and autophagy-related processes, and translation initiation factors. Notably, detection of translation initiation factors at the RTC was instrumental to visualize and demonstrate active translation proximal to replication complexes of several coronaviruses. Collectively, we establish a spatial link between viral RNA synthesis and diverse host factors of unprecedented breadth. Our data may serve as a paradigm for other positive-strand RNA viruses and provide a starting point for a comprehensive analysis of critical virus-host interactions that represent targets for therapeutic intervention. Coronaviruses can infect the nose and throat and are a main cause of the common cold. Infections are usually mild and short-lived, but sometimes they can turn nasty. In 2002 and 2012, two dangerous new coronaviruses emerged and caused diseases known as SARS and MERS. These viruses caused much more serious symptoms and in some cases proved deadly. The question is, why are some coronaviruses more dangerous than others? Scientists know that the body's response to virus infection can make a difference to whether someone had mild or severe disease. So, to understand why some coronaviruses cause a cold and others kill, they also need to learn how people react to virus infection. Coronaviruses hijack membranes inside cells and turn them into virus factories. Within these factories, the viruses build molecular machinery called replicase complexes to copy their genetic code, which is needed for the next generation of virus particles. The viruses steal and repurpose proteins from their host cell that will assist in the copying process. However, scientists do not yet know which host proteins are essential for the virus to multiply. So, to find out, V’kovski et al. developed a way to tag any host protein that came near the virus factories. The new technique involved attaching an enzyme called a biotin ligase to the replicase complex. This enzyme acts as a molecular label gun, attaching a chemical tag to any protein that comes within ten nanometres. The label gun revealed that more than 500 different proteins come into contact with the replicase complex. To find out what these proteins were doing, the next step was to switch off their genes one by one. This revealed the key cell machinery that coronaviruses hijack when they are replicating. It included the cell's cargo transport system, the waste disposal system, and the protein production system. Using these systems allows the viruses to copy their genetic code next to machines that can turn it straight into viral proteins. These new results provide clues about which proteins viruses actually need from their host cells. They also do not just apply to coronaviruses. Other viruses use similar strategies to complete their infection cycle. These findings could help researchers to understand more generally about how viruses multiply. In the future, this knowledge could lead to new ways to combat virus infections.
Journal Article
A genome-wide CRISPR screen identifies interactors of the autophagy pathway as conserved coronavirus targets
by
Plattet, Philippe
,
Dijkman, Ronald
,
Pfaender, Stephanie
in
Analysis
,
Antiviral Agents - pharmacology
,
Autophagy
2021
Over the past 20 years, 3 highly pathogenic human coronaviruses (HCoVs) have emerged—Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV), Middle East Respiratory Syndrome Coronavirus (MERS-CoV), and, most recently, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)—demonstrating that coronaviruses (CoVs) pose a serious threat to human health and highlighting the importance of developing effective therapies against them. Similar to other viruses, CoVs are dependent on host factors for their survival and replication. We hypothesized that evolutionarily distinct CoVs may exploit similar host factors and pathways to support their replication cycles. Herein, we conducted 2 independent genome-wide CRISPR/Cas-9 knockout (KO) screens to identify MERS-CoV and HCoV-229E host dependency factors (HDFs) required for HCoV replication in the human Huh7 cell line. Top scoring genes were further validated and assessed in the context of MERS-CoV and HCoV-229E infection as well as SARS-CoV and SARS-CoV-2 infection. Strikingly, we found that several autophagy-related genes, including TMEM41B, MINAR1, and the immunophilin FKBP8, were common host factors required for pan-CoV replication. Importantly, inhibition of the immunophilin protein family with the compounds cyclosporine A, and the nonimmunosuppressive derivative alisporivir, resulted in dose-dependent inhibition of CoV replication in primary human nasal epithelial cell cultures, which recapitulate the natural site of virus replication. Overall, we identified host factors that are crucial for CoV replication and demonstrated that these factors constitute potential targets for therapeutic intervention by clinically approved drugs.
Journal Article
Phosphorylation of SARS-CoV-2 Orf9b Regulates Its Targeting to Two Binding Sites in TOM70 and Recruitment of Hsp90
by
Klöhn, Mara
,
Brüggemann, Yannick
,
Pfaender, Stephanie
in
Amino acids
,
Binding sites
,
Dihydrofolate reductase
2021
SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) is the causative agent of the COVID19 pandemic. The SARS-CoV-2 genome encodes for a small accessory protein termed Orf9b, which targets the mitochondrial outer membrane protein TOM70 in infected cells. TOM70 is involved in a signaling cascade that ultimately leads to the induction of type I interferons (IFN-I). This cascade depends on the recruitment of Hsp90-bound proteins to the N-terminal domain of TOM70. Binding of Orf9b to TOM70 decreases the expression of IFN-I; however, the underlying mechanism remains elusive. We show that the binding of Orf9b to TOM70 inhibits the recruitment of Hsp90 and chaperone-associated proteins. We characterized the binding site of Orf9b within the C-terminal domain of TOM70 and found that a serine in position 53 of Orf9b and a glutamate in position 477 of TOM70 are crucial for the association of both proteins. A phosphomimetic variant Orf9bS53E showed drastically reduced binding to TOM70 and did not inhibit Hsp90 recruitment, suggesting that Orf9b–TOM70 complex formation is regulated by phosphorylation. Eventually, we identified the N-terminal TPR domain of TOM70 as a second binding site for Orf9b, which indicates a so far unobserved contribution of chaperones in the mitochondrial targeting of the viral protein.
Journal Article
LY6E impairs coronavirus fusion and confers immune control of viral disease
by
Schoggins, John W.
,
Pfaender, Stephanie
,
Boys, Ian N.
in
631/250/262
,
631/326/596/2555
,
631/326/596/2556
2020
Zoonotic coronaviruses (CoVs) are substantial threats to global health, as exemplified by the emergence of two severe acute respiratory syndrome CoVs (SARS-CoV and SARS-CoV-2) and Middle East respiratory syndrome CoV (MERS-CoV) within two decades
1
–
3
. Host immune responses to CoVs are complex and regulated in part through antiviral interferons. However, interferon-stimulated gene products that inhibit CoVs are not well characterized
4
. Here, we show that lymphocyte antigen 6 complex, locus E (LY6E) potently restricts infection by multiple CoVs, including SARS-CoV, SARS-CoV-2 and MERS-CoV. Mechanistic studies revealed that LY6E inhibits CoV entry into cells by interfering with spike protein-mediated membrane fusion. Importantly, mice lacking Ly6e in immune cells were highly susceptible to a murine CoV—mouse hepatitis virus. Exacerbated viral pathogenesis in Ly6e knockout mice was accompanied by loss of hepatic immune cells, higher splenic viral burden and reduction in global antiviral gene pathways. Accordingly, we found that constitutive Ly6e directly protects primary B cells from murine CoV infection. Our results show that LY6E is a critical antiviral immune effector that controls CoV infection and pathogenesis. These findings advance our understanding of immune-mediated control of CoV in vitro and in vivo—knowledge that could help inform strategies to combat infection by emerging CoVs.
Here, the authors identify lymphocyte antigen 6E (LY6E) as a coronavirus (CoV) restriction factor that prevents infection of B cells and dendritic cells. LY6E inhibits both human and mouse CoV entry into cells by interfering with viral spike protein-mediated membrane fusion. It facilitates an antiviral immune response that prevents liver disease and reduces death in the mouse model of MHV-A59 CoV infection.
Journal Article
Turmeric Root and Its Bioactive Ingredient Curcumin Effectively Neutralize SARS-CoV-2 In Vitro
by
Schipper, Leonie
,
Elsner, Carina
,
Pfaender, Stephanie
in
Animals
,
Antimicrobial activity
,
Antimicrobial agents
2021
Severe Acute Respiratory Syndrome Coronavirus Type 2 (SARS-CoV-2) is the causative agent of the coronavirus disease 2019 (COVID-19). The availability of effective and well-tolerated antiviral drugs for the treatment of COVID-19 patients is still very limited. Traditional herbal medicines elicit antiviral activity against various viruses and might therefore represent a promising option for the complementary treatment of COVID-19 patients. The application of turmeric root in herbal medicine has a very long history. Its bioactive ingredient curcumin shows a broad-spectrum antimicrobial activity. In the present study, we investigated the antiviral activity of aqueous turmeric root extract, the dissolved content of a curcumin-containing nutritional supplement capsule, and pure curcumin against SARS-CoV-2. Turmeric root extract, dissolved turmeric capsule content, and pure curcumin effectively neutralized SARS-CoV-2 at subtoxic concentrations in Vero E6 and human Calu-3 cells. Furthermore, curcumin treatment significantly reduced SARS-CoV-2 RNA levels in cell culture supernatants. Our data uncover curcumin as a promising compound for complementary COVID-19 treatment. Curcumin concentrations contained in turmeric root or capsules used as nutritional supplements completely neutralized SARS-CoV-2 in vitro. Our data argue in favor of appropriate and carefully monitored clinical studies that vigorously test the effectiveness of complementary treatment of COVID-19 patients with curcumin-containing products.
Journal Article
Rapid Quantification of SARS-CoV-2-Neutralizing Antibodies Using Propagation-Defective Vesicular Stomatitis Virus Pseudotypes
by
Zimmer, Gert
,
Meister, Toni Luise
,
Pfaender, Stephanie
in
Antibodies
,
Antiviral agents
,
Biosafety
2020
Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2, a new member of the genus Betacoronavirus, is a pandemic virus, which has caused numerous fatalities, particularly in the elderly and persons with underlying morbidities. At present, there are no approved vaccines nor antiviral therapies available. The detection and quantification of SARS-CoV-2-neutralizing antibodies plays a crucial role in the assessment of the immune status of convalescent COVID-19 patients, evaluation of recombinant therapeutic antibodies, and the evaluation of novel vaccines. To detect SARS-CoV-2-neutralizing antibodies, classically, a virus-neutralization test has to be performed at biosafety level 3, considerably limiting the general use of this test. In the present work, a biosafety level 1 pseudotype virus assay based on a propagation-incompetent vesicular stomatitis virus (VSV) has been used to determine the neutralizing antibody titers in convalescent COVID-19 patients. The neutralization titers in serum of two independently analyzed patient cohorts were available within 18 h and correlated well with those obtained with a classical SARS-CoV-2 neutralization test (Pearson correlation coefficients of r = 0.929 and r = 0.939, respectively). Most convalescent COVID-19 patients had only low titers of neutralizing antibodies (ND50 < 320). The sera of convalescent COVID-19 patients also neutralized pseudotype virus displaying the SARS-CoV-1 spike protein on their surface, which is homologous to the SARS-CoV-2 spike protein. In summary, we report a robust virus-neutralization assay, which can be used at low biosafety level 1 to rapidly quantify SARS-CoV-2-neutralizing antibodies in convalescent COVID-19 patients and vaccinated individuals.
Journal Article