Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
73
result(s) for
"Pham, Christine T. N."
Sort by:
Neutrophil serine proteases: specific regulators of inflammation
2006
Key Points
The neutrophil serine proteases cathepsin G, neutrophil elastase and proteinase 3 are structurally related enzymes that are stored in their active form in the azurophil granules of neutrophils.
They are synthesized during the pro-myelocytic stage of neutrophil differentiation as inactive zymogens that require proteolytic processing at the amino terminus to become active. The enzyme responsible for activation of the neutrophil serine proteases is the cysteine protease dipeptidyl peptidase I (DPPI; also known as cathepsin C).
Loss-of-function mutations in the gene encoding DPPI in humans result in only residual neutrophil serine protease activity. These patients have Papillon–Lefèvre Syndrome, which is a rare autosomal recessive disorder characterized by severe periodontitis and thickened skin on the hands and feet.
Neutrophil serine proteases are involved in the non-oxidative mechanism of bacterial killing. They cleave the outer membrane protein of Gram-negative bacteria and degrade virulence factors of several species of enterobacteria.
Neutrophil serine proteases can also convert chemokines to more potent chemoattractants by limited proteolysis of their amino terminus.
Proteinase 3 can process pro-tumour-necrosis factor to a biologically active soluble form and directly activate pro-interleukin-1β, thereby potentially increasing the inflammatory response.
Cathepsin G modulates neutrophil effector functions through an indirect interaction with surface integrins that results in increased chemokine release.
Interaction of neutrophil serine proteases with proteinase-activated receptors, Toll-like receptors and formyl peptide receptor leads to increased production of chemokines and pro-inflammatory cytokines. This induces chemotaxis and recruitment of leukocytes and provides more evidence of a role for these proteases in the inflammatory process that extends beyond their degradative activity.
This article describes recent studies defining the
in vivo
importance of neutrophil serine proteases in the intracellular and extracellular killing of microorganisms, as well as in the regulation of non-infectious inflammatory processes, such as the modulation of active cytokine concentrations.
Neutrophils are essential for host defence against invading pathogens. They engulf and degrade microorganisms using an array of weapons that include reactive oxygen species, antimicrobial peptides, and proteases such as cathepsin G, neutrophil elastase and proteinase 3. As discussed in this Review, the generation of mice deficient in these proteases has established a role for these enzymes as intracellular microbicidal agents. However, I focus mainly on emerging data indicating that, after release, these proteases also contribute to the extracellular killing of microorganisms, and regulate non-infectious inflammatory processes by activating specific receptors and modulating the levels of cytokines.
Journal Article
Neutrophils and neutrophil serine proteases are increased in the spleens of estrogen-treated C57BL/6 mice and several strains of spontaneous lupus-prone mice
by
Cowan, Catharine
,
Khan, Deena
,
Liang, Zhihong
in
Animals
,
Autoimmune diseases
,
Biology and Life Sciences
2017
Estrogen, a natural immunomodulator, regulates the development and function of diverse immune cell types. There is now renewed attention on neutrophils and neutrophil serine proteases (NSPs) such as neutrophil elastase (NE), proteinase 3 (PR3), and cathepsin G (CG) in inflammation and autoimmunity. In this study, we found that although estrogen treatment significantly reduced total splenocytes number, it markedly increased the splenic neutrophil absolute numbers in estrogen-treated C57BL/6 (B6) mice when compared to placebo controls. Concomitantly, the levels of NSPs and myeloperoxidase (MPO) were highly upregulated in the splenocytes from estrogen-treated mice. Despite the critical role of NSPs in the regulation of non-infectious inflammation, by employing NE-/-/PR3-/-/CG-/- triple knock out mice, we demonstrated that the absence of NSPs affected neither estrogen's ability to increase splenic neutrophils nor the induction of inflammatory mediators (IFNγ, IL-1β, IL-6, TNFα, MCP-1, and NO) from ex vivo activated splenocytes. Depletion of neutrophils in vitro in splenocytes with anti-Ly6G antibody also had no obvious effect on NSP expression or LPS-induced IFNγ and MCP-1. These data suggest that estrogen augments NSPs, which appears to be independent of enhancing ex vivo inflammatory responses. Since estrogen has been implicated in regulating several experimental autoimmune diseases, we extended our observations in estrogen-treated B6 mice to spontaneous autoimmune-prone female MRL-lpr, B6-lpr and NZB/WF1 mice. There was a remarkable commonality with regards to the increase of neutrophils and concomitant increase of NSPs and MPO in the splenic cells of different strains of autoimmune-prone mice and estrogen-treated B6 mice. Collectively, since NSPs and neutrophils are involved in diverse pro-inflammatory activities, these data suggest a potential pathologic implication of increased neutrophils and NSPs that merits further investigation.
Journal Article
Non-invasive monitoring of arthritis treatment response via targeting of tyrosine-phosphorylated annexin A2 in chondrocytes
2021
Background
The development and optimization of therapies for rheumatoid arthritis (RA) is currently hindered by a lack of methods for early non-invasive monitoring of treatment response. Annexin A2, an inflammation-associated protein whose presence and phosphorylation levels are upregulated in RA, represents a potential molecular target for tracking RA treatment response.
Methods
LS301, a near-infrared dye-peptide conjugate that selectively targets tyrosine 23-phosphorylated annexin A2 (pANXA2), was evaluated for its utility in monitoring disease progression, remission, and early response to drug treatment in mouse models of RA by fluorescence imaging. The intraarticular distribution and localization of LS301 relative to pANXA2 was determined by histological and immunohistochemical methods.
Results
In mouse models of spontaneous and serum transfer-induced inflammatory arthritis, intravenously administered LS301 showed selective accumulation in regions of joint pathology including paws, ankles, and knees with positive correlation between fluorescent signal and disease severity by clinical scoring. Whole-body near-infrared imaging with LS301 allowed tracking of spontaneous disease remission and the therapeutic response after dexamethasone treatment. Histological analysis showed preferential accumulation of LS301 within the chondrocytes and articular cartilage in arthritic mice, and colocalization was observed between LS301 and pANXA2 in the joint tissue.
Conclusions
We demonstrate that fluorescence imaging with LS301 can be used to monitor the progression, remission, and early response to drug treatment in mouse models of RA. Given the ease of detecting LS301 with portable optical imaging devices, the agent may become a useful early treatment response reporter for arthritis diagnosis and drug evaluation.
Journal Article
Antibody directs properdin-dependent activation of the complement alternative pathway in a mouse model of abdominal aortic aneurysm
2012
Abdominal aortic aneurysm (AAA) is a complex inflammatory vascular disease. There are currently limited treatment options for AAA when surgery is inapplicable. Therefore, insights into molecular mechanisms underlying AAA pathogenesis may reveal therapeutic targets that could be manipulated pharmacologically or biologically to halt disease progression. Using an elastase-induced AAA mouse model, we previously established that the complement alternative pathway (AP) plays a critical role in the development of AAA. However, the mechanism by which complement AP is initiated remains undefined. The complement protein properdin, traditionally viewed as a positive regulator of the AP, may also initiate complement activation by binding directly to target surfaces. In this study, we sought to determine whether properdin serves as a focal point for the initiation of the AP complement activation in AAA. Using a properdin loss of function mutation in mice and a mutant form of the complement factor B protein that produces a stable, properdin-free AP C3 convertase, we show that properdin is required for the development of elastase-induced AAA in its primary role as a convertase stabilizer. Unexpectedly, we find that, in AAA, natural IgG antibodies direct AP-mediated complement activation. The absence of IgG abrogates C3 deposition in elastase-perfused aortic wall and protects animals from AAA development. We also determine that blockade of properdin activity prevents aneurysm formation. These results indicate that an innate immune response to self-antigens activates the complement system and initiates the inflammatory cascade in AAA. Moreover, the study suggests that properdin-targeting strategies may halt aneurysmal growth.
Journal Article
Hydrogel Encapsulation of Genome-Engineered Stem Cells for Long-Term Self-Regulating Anti-Cytokine Therapy
by
Saleh, Leila S.
,
Savadipour, Alireza
,
Guilak, Farshid
in
Arthritis
,
autoimmune
,
Autoimmune diseases
2023
Biologic therapies have revolutionized treatment options for rheumatoid arthritis (RA) but their continuous administration at high doses may lead to adverse events. Thus, the development of improved drug delivery systems that can sense and respond commensurately to disease flares represents an unmet medical need. Toward this end, we generated induced pluripotent stem cells (iPSCs) that express interleukin-1 receptor antagonist (IL-1Ra, an inhibitor of IL-1) in a feedback-controlled manner driven by the macrophage chemoattractant protein-1 (Ccl2) promoter. Cells were seeded in agarose hydrogel constructs made from 3D printed molds that can be injected subcutaneously via a blunt needle, thus simplifying implantation of the constructs, and the translational potential. We demonstrated that the subcutaneously injected agarose hydrogels containing genome-edited Ccl2-IL1Ra iPSCs showed significant therapeutic efficacy in the K/BxN model of inflammatory arthritis, with nearly complete abolishment of disease severity in the front paws. These implants also exhibited improved implant longevity as compared to the previous studies using 3D woven scaffolds, which require surgical implantation. This minimally invasive cell-based drug delivery strategy may be adapted for the treatment of other autoimmune or chronic diseases, potentially accelerating translation to the clinic.
Journal Article
Role of NADPH Oxidase versus Neutrophil Proteases in Antimicrobial Host Defense
by
Grimm, Melissa J.
,
Vethanayagam, R. Robert
,
Almyroudis, Nikolaos G.
in
Animals
,
Anti-Infective Agents - pharmacology
,
Antifungal agents
2011
NADPH oxidase is a crucial enzyme in mediating antimicrobial host defense and in regulating inflammation. Patients with chronic granulomatous disease, an inherited disorder of NADPH oxidase in which phagocytes are defective in generation of reactive oxidant intermediates (ROIs), suffer from life-threatening bacterial and fungal infections. The mechanisms by which NADPH oxidase mediate host defense are unclear. In addition to ROI generation, neutrophil NADPH oxidase activation is linked to the release of sequestered proteases that are posited to be critical effectors of host defense. To definitively determine the contribution of NADPH oxidase versus neutrophil serine proteases, we evaluated susceptibility to fungal and bacterial infection in mice with engineered disruptions of these pathways. NADPH oxidase-deficient mice (p47(phox-/-)) were highly susceptible to pulmonary infection with Aspergillus fumigatus. In contrast, double knockout neutrophil elastase (NE)(-/-)×cathepsin G (CG)(-/-) mice and lysosomal cysteine protease cathepsin C/dipeptidyl peptidase I (DPPI)-deficient mice that are defective in neutrophil serine protease activation demonstrated no impairment in antifungal host defense. In separate studies of systemic Burkholderia cepacia infection, uniform fatality occurred in p47(phox-/-) mice, whereas NE(-/-)×CG(-/-) mice cleared infection. Together, these results show a critical role for NADPH oxidase in antimicrobial host defense against A. fumigatus and B. cepacia, whereas the proteases we evaluated were dispensable. Our results indicate that NADPH oxidase dependent pathways separate from neutrophil serine protease activation are required for host defense against specific pathogens.
Journal Article
Safety Evaluations of Rapamycin Perfluorocarbon Nanoparticles in Ovarian Tumor-Bearing Mice
2024
Nanomedicine holds great potential for revolutionizing medical treatment. Ongoing research and advancements in nanotechnology are continuously expanding the possibilities, promising significant advancements in healthcare. To fully harness the potential of nanotechnology in medical applications, it is crucial to conduct safety evaluations for the nanomedicines that offer effective benefits in the preclinical stage. Our recent efficacy studies indicated that rapamycin perfluorocarbon (PFC) nanoparticles showed promise in mitigating cisplatin-induced acute kidney injury (AKI). As cisplatin is routinely administered to ovarian cancer patients as their first-line chemotherapy, in this study, we focused on evaluating the safety of rapamycin PFC nanoparticles in mice bearing ovarian tumor xenografts. Specifically, this study evaluated the effects of repeat-dose rapamycin PFC nanoparticle treatment on vital organs, the immune system, and tumor growth and assessed pharmacokinetics and biodistribution. Our results indicated that rapamycin PFC nanoparticle treatment did not cause any detectable adverse effects on cardiac, renal, or hepatic functions or on splenocyte populations, but it reduced the splenocyte secretion of IL-10, TNFα, and IL12p70 upon IgM stimulation. The pharmacokinetics and biodistribution results revealed a significant enhancement in the delivery of rapamycin to tumors by rapamycin PFC nanoparticles, which, in turn, led to a significant reduction in ovarian tumor growth. Therefore, rapamycin PFC nanoparticles have the potential to be clinically beneficial in cisplatin-treated ovarian cancer patients.
Journal Article
Rapamycin Perfluorocarbon Nanoparticle Mitigates Cisplatin-Induced Acute Kidney Injury
by
Wickline, Samuel A.
,
Hu, Ying
,
Quirk, James D.
in
Acute Kidney Injury - chemically induced
,
Acute Kidney Injury - drug therapy
,
Acute Kidney Injury - metabolism
2023
For nearly five decades, cisplatin has played an important role as a standard chemotherapeutic agent and been prescribed to 10–20% of all cancer patients. Although nephrotoxicity associated with platinum-based agents is well recognized, treatment of cisplatin-induced acute kidney injury is mainly supportive and no specific mechanism-based prophylactic approach is available to date. Here, we postulated that systemically delivered rapamycin perfluorocarbon nanoparticles (PFC NP) could reach the injured kidneys at sufficient and sustained concentrations to mitigate cisplatin-induced acute kidney injury and preserve renal function. Using fluorescence microscopic imaging and fluorine magnetic resonance imaging/spectroscopy, we illustrated that rapamycin-loaded PFC NP permeated and were retained in injured kidneys. Histologic evaluation and blood urea nitrogen (BUN) confirmed that renal structure and function were preserved 48 h after cisplatin injury. Similarly, weight loss was slowed down. Using western blotting and immunofluorescence staining, mechanistic studies revealed that rapamycin PFC NP significantly enhanced autophagy in the kidney, reduced the expression of intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1), as well as decreased the expression of the apoptotic protein Bax, all of which contributed to the suppression of apoptosis that was confirmed with TUNEL staining. In summary, the delivery of an approved agent such as rapamycin in a PFC NP format enhances local delivery and offers a novel mechanism-based prophylactic therapy for cisplatin-induced acute kidney injury.
Journal Article
Critical role of dipeptidyl peptidase I in neutrophil recruitment during the development of experimental abdominal aortic aneurysms
by
Simmons, Pamela M
,
Pham, Christine T.N
,
Pagano, Monica B
in
Adoptive Transfer
,
aneurysm
,
Aneurysms
2007
Dipeptidyl peptidase I (DPPI) is a lysosomal cysteine protease critical for the activation of granule-associated serine proteases, including neutrophil elastase, cathepsin G, and proteinase 3. DPPI and granule-associated serine proteases have been shown to play a key role in regulating neutrophil recruitment at sites of inflammation. It has recently been suggested that neutrophils and neutrophil-associated proteases may also be important in the development and progression of abdominal aortic aneurysms (AAAs), a common vascular disease associated with chronic inflammation and destructive remodeling of aortic wall connective tissue. Here we show that mice with a loss-of-function mutation in DPPI are resistant to the development of elastase-induced experimental AAAs. This is in part because of diminished recruitment of neutrophils to the elastase-injured aortic wall and impaired local production of CXC-chemokine ligand (CXCL) 2. Furthermore, adoptive transfer of wild-type neutrophils is sufficient to restore susceptibility to AAAs in DPPI-deficient mice, as well as aortic wall expression of CXCL2. In addition, in vivo blockade of CXCL2 by using neutralizing antibodies directed against its cognate receptor leads to a significant reduction in aortic dilatation. These findings suggest that DPPI and/or granule-associated serine proteases are necessary for neutrophil recruitment into the diseased aorta and that these proteases act to amplify vascular wall inflammation that leads to AAAs.
Journal Article
Caspase-1-driven neutrophil pyroptosis and its role in host susceptibility to Pseudomonas aeruginosa
by
Planès, Rémi
,
Universiteit Gent = Ghent University = Université de Gand (UGENT)
,
European Project: 804249,INFLAME
in
Apoptosis
,
Bacteria
,
Bacterial infections
2022
Multiple regulated neutrophil cell death programs contribute to host defense against infections. However, despite expressing all necessary inflammasome components, neutrophils are thought to be generally defective in Caspase-1-dependent pyroptosis. By screening different bacterial species, we found that several Pseudomonas aeruginosa ( P . aeruginosa ) strains trigger Caspase-1-dependent pyroptosis in human and murine neutrophils. Notably, deletion of Exotoxins U or S in P . aeruginosa enhanced neutrophil death to Caspase-1-dependent pyroptosis, suggesting that these exotoxins interfere with this pathway. Mechanistically, P . aeruginosa Flagellin activates the NLRC4 inflammasome, which supports Caspase-1-driven interleukin (IL)-1β secretion and Gasdermin D (GSDMD)-dependent neutrophil pyroptosis. Furthermore, P . aeruginosa -induced GSDMD activation triggers Calcium-dependent and Peptidyl Arginine Deaminase-4-driven histone citrullination and translocation of neutrophil DNA into the cell cytosol without inducing extracellular Neutrophil Extracellular Traps. Finally, we show that neutrophil Caspase-1 contributes to IL-1β production and susceptibility to pyroptosis-inducing P . aeruginosa strains in vivo . Overall, we demonstrate that neutrophils are not universally resistant for Caspase-1-dependent pyroptosis.
Journal Article