Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
229 result(s) for "Pham, Ngoc Bich"
Sort by:
The Impact of Corporate Social Responsibilities (CSR), Entrepreneurship, and Financial Factors on the Financial Performance of the Banks in ASEAN Countries
All the organizations are striving for the high financial performance that could influence by many factors and attained the attention of regulators and recent studies. Thus, the present study examined the impact of corporate social responsibilities (CSR), entrepreneurship and financial factors such as leverage and liquidity along with firm size on the financial performance of the banks in ASEAN countries. This study has adopted the quantitative methods for the collecting data and gathered the published secondary data from the statements. The data has been extracted from the financial statements and published CSR reports of the banks in ASEAN countries from 2015 to 2020. The ongoing study has executed the robust standard error and fixed effect model (FEM) to examine the relationships among the variables. The results indicated that CSR, entrepreneurship, leverage, liquidity and firm size have significant and positive nexus with financial performance of the banks in ASEAN countries. These outcomes have provided the guidelines to the regulators of the banks that they should focus on CSR and entrepreneurship that could increase the financial performance of the banks.
LED Lights Promote Growth and Flavonoid Accumulation of Anoectochilus roxburghii and Are Linked to the Enhanced Expression of Several Related Genes
Anoectochilus roxburghii is a wild edible species and has been traditionally used for a wide range of diseases in many countries. Our research aims to find the optimal light-emitting diode (LED) lighting conditions to improve the growth and development of A. roxburghii seedling at the acclimation stage. Two-month-old explants were cultured under the various lighting conditions including red (R), blue (B), BR (one blue: four red), BRW151 (one blue: five red: one white), BRW142 (one blue: four red: two white), and fluorescent lamp (FL). The results showed that the lighting conditions not only affect the growth and morphology of plants but also the accumulation of total flavonoids. Single wavelengths (B or R LED) inhibited the growth and secondary biosynthesis of A. roxburghii, while the BR LED showed an enhancement in both growth and biomass accumulation. A. roxburghii plants were grown under BR LED light has average plant height (7.18 cm), stem diameter (17.6mm), number of leaves (5.78 leaves/tree), leaf area (4.67 cm2), fresh weight (0.459 g/tree), dry matter percentages (11.69%), and total flavonoid (1.811 mg/g FW) is considered to be superior to FL lamps and other LEDs in the experiment. This indicates that both blue and red wavelengths are required for the normal growth of A. roxburghii. To learn more about how light affects flavonoid biosynthesis, we evaluated the expression of genes involved in this process (pal, chs, chi, and fls) and found that BR LED light enhances the expression level of chi and fls genes compared to fluorescent lamps (1.18 and 1.21 times, respectively), leading to an increase in the flavonoid content of plant. Therefore, applying BR LED during in vitro propagation of A. roxburghii could be a feasible way to improve the medicinal value of this plant.
Ladies Selling Breakfast
Ho Chi Minh City, Vietnam’s largest city, supports a vibrant street food culture. Most of the city’s street-engaged food traders are poor and unskilled women, and there is scant research about how they build social networks and social capital that sustain their microbusinesses. This article focusses on the intimate socialities that street-engaged food traders develop with customers, shop owners and sister-traders in order to stabilise their incomes while their informal street-trading activities are policed and potentially shut down. Recent COVID-19 lockdown and social-distancing measures disrupted the crucial interpersonal relations of street trading and left the traders with no income. This article explores traders’ strategies for achieving economic security, and outlines transformations of intimate socialities into mediated and digital relations after the lockdown.
Detection of a novel Cry2Ab toxin against Etiella zinckenella Treitschke from the Bacillus thuringiensis serovar canadensis SP142 strain
The soybean (Glycine max) is an important crop. The pod borer (Etiella zinckenella) is one of the most serious insects that attacks various Leguminosae. Common insecticidal controls are ineffective because of the insect's growth properties. Use of resistant crop varieties offers stabilisation of the yield and has benefits over the use of insecticides. Bacillus thuringiensis is widely used as a bioinsecticide for pest control and a genetic material for pest-resistant transgenic plants. However, the resistance evolution of target insects is emerging as a major threat to the long-term efficacy of these applications. Studies on the detection of novel highly host-specific pesticidal proteins have been in urgent demand. A search for the source of Bt Cry toxins against E. zinckenella in the Vietnamese B. thuringiensis strain collection has been performed. The B. thuringiensis serovar canadensis SP142 is one of strains that resulted in more than 80% mortality to this pod borer. Its genome was estimated about 7.1 Mb and revealed a putative novel cry2Ab gene. The sequence analysis of cry2Ab gene revealed an open reading frame of 1 899 bp encoding a 633-amino acid protein with a calculated molecular mass of 70 kDa and 99.05% to 99.21% homology to known cry2Ab genes in the GenBank. There are eighteen different nucleotide sites which lead to five amino acid changes in Domain I and II. This gene was expressed in Escherichia coli BL21(DE3) and the purified Cry2Ab was toxic to E. zinckenella larvae with an LC50 value of 1.74 µg/g diet. The novel Cry2Ab was designated as Cry2Ab39 by the Bacterial Pesticidal Protein Resource Center and its sequence was deposited in the GenBank (MN319700.1). This is a type of novel Cry2 toxin from B. thuringiensisagainst E. zinckenella, and it is important for breeding E. zinckenella-resistant soybeans.
A Plant-Based Artificial Haemagglutinin (A/H5N1) Strongly Induced Neutralizing Immune Responses in Mice
Developing new vaccine candidates is considered the best strategy for protecting poultry against artificial haemagglutinin (A/H5N1) strains. The transient expression system in plants has been a very efficient method for rapidly producing haemagglutinin-based recombinant vaccines. In this study, two novel artificial trimeric haemagglutinin constructs representing A/H5N1 strains that were detected in poultry from 2005 to 2015 in Vietnam, H5.c1 (representing all of the subclades 1.1, 1.1.1, and 1.1.2) and H5.c2 (representing all of the subclades 2.3.2.1, 2.3.2.1a, 2.3.2.1b, and 2.3.2.1c), were designed for transient expression in Nicotiana benthamiana via agroinfiltration. However, only the H5.c1 protein, which showed the best expression and biofunction via the haemagglutination test, was selected for purification by immobilized metal ion affinity chromatography (IMAC). The trimeric structure of the IMAC-purified H5.c1 protein was well characterized by cross-linking reaction and size exclusion chromatography. An indirect ELISA and Western blot analysis of vaccinated mouse sera demonstrated that the H5.c1 protein strongly induced HA-specific Immunoglobulin G (IgG) immune responses. Notably, the H5.c1 protein induced strongly neutralizing antibodies against homologous H5.c1 protein and that of three heterologous native strains of clade, 1, 1.1, and 2.3.2.1c, in haemagglutination inhibition assays. Therefore, the plant-based artificial H5.c1 protein can be a promising vaccine candidate for conferring poultry resistance against A/H5N1 viruses in Vietnam.
The impact of absorbing productivity spillover on export ability: evidence from an emerging market
This paper examines spillover effects of foreign direct investment (FDI) through horizontal, backward, and forward linkages, and how these spillovers are driven by the exporting ability for Vietnamese manufacturing enterprises. Those participating in export activity can increase the spillover absorption from FDI through the horizontal and backward linkages although local firms are less likely to take advantage of productivity spillovers during this period. In addition, these exporting firms confront the productivity protection of the FDI firms in the same industries. In contrast, the higher their exportability is, the better their learning from the foreign firms in the same downstream sectors becomes. The findings of this paper provide valuable evidence and implications for policymakers in managing and enhancing export ability for firms in the emerging market.
Simultaneously induced mutations in eIF4E genes by CRISPR/Cas9 enhance PVY resistance in tobacco
Tobacco is an important commercial crop and a rich source of alkaloids for pharmaceutical and agricultural applications. However, its yield can be reduced by up to 70% due to virus infections, especially by a potyvirus Potato virus Y (PVY). The replication of PVY relies on host factors, and eukaryotic translation initiation factor 4Es (eIF4Es) have already been identified as recessive resistance genes against potyviruses in many plant species. To investigate the molecular basis of PVY resistance in the widely cultivated allotetraploid tobacco variety K326, we developed a dual guide RNA CRISPR/Cas9 system for combinatorial gene editing of two clades, eIF4E1 ( eIF4E1-S and eIF4E1-T ) and eIF4E2 ( eIF4E2-S and eIF4E2-T ) in the eIF4E gene family comprising six members in tobacco. We screened for CRISPR/Cas9-induced mutations by heteroduplex analysis and Sanger sequencing, and monitored PVY O accumulation in virus challenged regenerated plants by DAS-ELISA both in T0 and T1 generations. We found that all T0 lines carrying targeted mutations in the eIF4E1-S gene displayed enhanced resistance to PVY O confirming previous reports. More importantly, our combinatorial approach revealed that eIF4E1-S is necessary but not sufficient for complete PVY resistance. Only the quadruple mutants harboring loss-of-function mutations in eIF4E1-S , eIF4E1-T , eIF4E2-S and eIF4E2-T showed heritable high-level resistance to PVY O in tobacco. Our work highlights the importance of understanding host factor redundancy in virus replication and provides a roadmap to generate virus resistance by combinatorial CRISPR/Cas9-mediated editing in non-model crop plants with complex genomes.
CRISPR/Cas9-Mediated Knockout of Galactinol Synthase-Encoding Genes Reduces Raffinose Family Oligosaccharide Levels in Soybean Seeds
Raffinose family oligosaccharides (RFOs) are major soluble carbohydrates in soybean seeds that cannot be digested by human and other monogastric animals. Hence, a major goal is to reduce RFO levels to improve the nutritional quality of soybean. In this study, we utilized a dual gRNAs CRISPR/Cas9 system to induce knockouts in two soybean galactinol synthase (GOLS) genes, GmGOLS1A and its homeolog GmGOLS1B . Genotyping of T0 plants showed that the construct design was efficient in inducing various deletions in the target sites or sequences spanning the two target sites of both GmGOLS1A and GmGOLS1B genes. A subset of induced alleles was successfully transferred to progeny and, at the T2 generation, we identified null segregants of single and double mutant genotypes without off-target induced mutations. The seed carbohydrate analysis of double mutant lines showed a reduction in the total RFO content of soybean seed from 64.7 mg/g dry weight to 41.95 mg/g dry weight, a 35.2% decrease. On average, the stachyose content, the most predominant RFO in soybean seeds, decreased by 35.4% in double mutant soybean, while the raffinose content increased by 41.7%. A slight decrease in verbascose content was also observed in mutant lines. Aside from changes in soluble carbohydrate content, some mutant lines also exhibited increased protein and fat contents. Otherwise, no difference in seed weight, seed germination, plant development and morphology was observed in the mutants. Our findings indicate that GmGOLS1A and GmGOLS1B contribute to the soybean oligosaccharide profile through RFO biosynthesis pathways, and are promising targets for future investigation, as well as crop improvement efforts. Our results also demonstrate the potential in using elite soybean cultivars for transformation and targeted genome editing.
Removal of Heavy Metals (Cd2+, Cu2+, Ni2+, Pb2+) from Aqueous Solution Using Hizikia fusiformis as an Algae-Based Bioadsorbent
This study investigated the applicability of algae (Hizikia fusiformis, Green gracilaria, and Codium fragile) for removing heavy metals (Cd2+, Cu2+, Ni2+, and Pb2+) from aqueous solutions. Among the algae, H. fusiformis was chosen as a bioadsorbent and modified with NaOH and HCl. The results showed that the biosorption capacity of H. fusiformis improved significantly after treatment with NaOH; however, H. fusiformis modified with HCl did not achieve the expected value. The NaOH treatment enhanced the biosorption of metals on the treated H. fusiformis because of the hydrolysis reaction producing carboxylic (–COOH) and hydroxyl groups (–OH). The kinetics for Cd2+, Cu2+, Ni2+, and Pb2+ biosorption well fitted to pseudo-first-order, pseudo-second-order, and Elovich models, with R2 of >0.994. The Freundlich model provided a good fit for the equilibrium biosorption of Cd2+, Cu2+, and Ni2+ by both algae and the Langmuir model for Pb2+. The maximum biosorption of metals was in the order Pb2+ >> Cu2+ ≈ Ni2+ > Cd2+, with qmax of 167.73, 45.09, 44.38, and 42.08 mg/g, respectively. With an increase in the solution pH, metal biosorption was enhanced, and considerable enhancement was observed in the pH range of 2–4. Thus, H. fusiformis is expected to be considered a superior candidate for metal biosorption.
Plant-Derived Trimeric CO-26K-Equivalent Epitope Induced Neutralizing Antibodies Against Porcine Epidemic Diarrhea Virus
(PEDV) is a causative agent of a highly infectious disease with a high mortality rate, especially in newborn piglets in Asian countries resulting in serious economic loss. The development of a rapid, safe, effective and cost-efficient vaccine is crucial to protect pigs against PEDV infection. The COE antigen is regarded to be a major target for subunit vaccine development against PEDV infection. The naturally assembled COE protein forms a homotrimeric structure. In the present study, we successfully produced a trimeric COE protein as a native structure by fusion with the C-terminal isoleucine zipper trimerization (GCN4pII) motif in , with a high expression level shown via semi-quantified Western blots. Trimeric COE protein was purified via immobilized metal affinity chromatography (IMAC), and its trimeric structure was successfully demonstrated by a cross-linking reaction, and a native PAGE gel. A crude extract containing the COE trimer was used for evaluating immunogenicity in mice. After 1 and 2 booster immunizations, the crude extract containing trimeric COE elicited elevated PEDV-specific humoral responses, as demonstrated by ELISA and Western blot analyses. Notably, a virus-neutralizing antibody assay indicated that the neutralization activities of sera of mice vaccinated with the crude extract containing COE-GCN4pII were similar to those of mice vaccinated with a commercial vaccine. These results suggest that crude extract containing trimeric COE is a promising plant-based subunit vaccine candidate for PEDV prevention.