Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
167 result(s) for "Phillippy, Adam M"
Sort by:
Merqury: reference-free quality, completeness, and phasing assessment for genome assemblies
Recent long-read assemblies often exceed the quality and completeness of available reference genomes, making validation challenging. Here we present Merqury, a novel tool for reference-free assembly evaluation based on efficient k-mer set operations. By comparing k-mers in a de novo assembly to those found in unassembled high-accuracy reads, Merqury estimates base-level accuracy and completeness. For trios, Merqury can also evaluate haplotype-specific accuracy, completeness, phase block continuity, and switch errors. Multiple visualizations, such as k-mer spectrum plots, can be generated for evaluation. We demonstrate on both human and plant genomes that Merqury is a fast and robust method for assembly validation.
Interactive metagenomic visualization in a Web browser
Background A critical output of metagenomic studies is the estimation of abundances of taxonomical or functional groups. The inherent uncertainty in assignments to these groups makes it important to consider both their hierarchical contexts and their prediction confidence. The current tools for visualizing metagenomic data, however, omit or distort quantitative hierarchical relationships and lack the facility for displaying secondary variables. Results Here we present Krona, a new visualization tool that allows intuitive exploration of relative abundances and confidences within the complex hierarchies of metagenomic classifications. Krona combines a variant of radial, space-filling displays with parametric coloring and interactive polar-coordinate zooming. The HTML5 and JavaScript implementation enables fully interactive charts that can be explored with any modern Web browser, without the need for installed software or plug-ins. This Web-based architecture also allows each chart to be an independent document, making them easy to share via e-mail or post to a standard Web server. To illustrate Krona's utility, we describe its application to various metagenomic data sets and its compatibility with popular metagenomic analysis tools. Conclusions Krona is both a powerful metagenomic visualization tool and a demonstration of the potential of HTML5 for highly accessible bioinformatic visualizations. Its rich and interactive displays facilitate more informed interpretations of metagenomic analyses, while its implementation as a browser-based application makes it extremely portable and easily adopted into existing analysis packages. Both the Krona rendering code and conversion tools are freely available under a BSD open-source license, and available from: http://krona.sourceforge.net .
MUMmer4: A fast and versatile genome alignment system
The MUMmer system and the genome sequence aligner nucmer included within it are among the most widely used alignment packages in genomics. Since the last major release of MUMmer version 3 in 2004, it has been applied to many types of problems including aligning whole genome sequences, aligning reads to a reference genome, and comparing different assemblies of the same genome. Despite its broad utility, MUMmer3 has limitations that can make it difficult to use for large genomes and for the very large sequence data sets that are common today. In this paper we describe MUMmer4, a substantially improved version of MUMmer that addresses genome size constraints by changing the 32-bit suffix tree data structure at the core of MUMmer to a 48-bit suffix array, and that offers improved speed through parallel processing of input query sequences. With a theoretical limit on the input size of 141Tbp, MUMmer4 can now work with input sequences of any biologically realistic length. We show that as a result of these enhancements, the nucmer program in MUMmer4 is easily able to handle alignments of large genomes; we illustrate this with an alignment of the human and chimpanzee genomes, which allows us to compute that the two species are 98% identical across 96% of their length. With the enhancements described here, MUMmer4 can also be used to efficiently align reads to reference genomes, although it is less sensitive and accurate than the dedicated read aligners. The nucmer aligner in MUMmer4 can now be called from scripting languages such as Perl, Python and Ruby. These improvements make MUMer4 one the most versatile genome alignment packages available.
Long-read mapping to repetitive reference sequences using Winnowmap2
Approximately 5–10% of the human genome remains inaccessible due to the presence of repetitive sequences such as segmental duplications and tandem repeat arrays. We show that existing long-read mappers often yield incorrect alignments and variant calls within long, near-identical repeats, as they remain vulnerable to allelic bias. In the presence of a nonreference allele within a repeat, a read sampled from that region could be mapped to an incorrect repeat copy. To address this limitation, we developed a new long-read mapping method, Winnowmap2, by using minimal confidently alignable substrings. Winnowmap2 computes each read mapping through a collection of confident subalignments. This approach is more tolerant of structural variation and more sensitive to paralog-specific variants within repeats. Our experiments highlight that Winnowmap2 successfully addresses the issue of allelic bias, enabling more accurate downstream variant calls in repetitive sequences. Winnowmap2 enables better long-read mapping and more accurate variant calling in repetitive regions of the genome.
High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries
A fundamental question in microbiology is whether there is continuum of genetic diversity among genomes, or clear species boundaries prevail instead. Whole-genome similarity metrics such as Average Nucleotide Identity (ANI) help address this question by facilitating high resolution taxonomic analysis of thousands of genomes from diverse phylogenetic lineages. To scale to available genomes and beyond, we present FastANI, a new method to estimate ANI using alignment-free approximate sequence mapping. FastANI is accurate for both finished and draft genomes, and is up to three orders of magnitude faster compared to alignment-based approaches. We leverage FastANI to compute pairwise ANI values among all prokaryotic genomes available in the NCBI database. Our results reveal clear genetic discontinuity, with 99.8% of the total 8 billion genome pairs analyzed conforming to >95% intra-species and <83% inter-species ANI values. This discontinuity is manifested with or without the most frequently sequenced species, and is robust to historic additions in the genome databases. Average Nucleotide Identity (ANI) is a robust and useful measure to gauge genetic relatedness between two genomes. Here, the authors develop FastANI, a method to compute ANI using alignment-free approximate sequence mapping, and show 95% ANI is an accurate threshold for demarcating prokaryotic species by analyzing about 90,000 prokaryotic genomes.
Integrating Hi-C links with assembly graphs for chromosome-scale assembly
Long-read sequencing and novel long-range assays have revolutionized de novo genome assembly by automating the reconstruction of reference-quality genomes. In particular, Hi-C sequencing is becoming an economical method for generating chromosome-scale scaffolds. Despite its increasing popularity, there are limited open-source tools available. Errors, particularly inversions and fusions across chromosomes, remain higher than alternate scaffolding technologies. We present a novel open-source Hi-C scaffolder that does not require an a priori estimate of chromosome number and minimizes errors by scaffolding with the assistance of an assembly graph. We demonstrate higher accuracy than the state-of-the-art methods across a variety of Hi-C library preparations and input assembly sizes. The Python and C++ code for our method is openly available at https://github.com/machinegun/SALSA.
Strain-level metagenomic assignment and compositional estimation for long reads with MetaMaps
Metagenomic sequence classification should be fast, accurate and information-rich. Emerging long-read sequencing technologies promise to improve the balance between these factors but most existing methods were designed for short reads. MetaMaps is a new method, specifically developed for long reads, capable of mapping a long-read metagenome to a comprehensive RefSeq database with >12,000 genomes in <16 GB or RAM on a laptop computer. Integrating approximate mapping with probabilistic scoring and EM-based estimation of sample composition, MetaMaps achieves >94% accuracy for species-level read assignment and r 2  > 0.97 for the estimation of sample composition on both simulated and real data when the sample genomes or close relatives are present in the classification database. To address novel species and genera, which are comparatively harder to predict, MetaMaps outputs mapping locations and qualities for all classified reads, enabling functional studies (e.g. gene presence/absence) and detection of incongruities between sample and reference genomes. Sequencing platforms, such as Oxford Nanopore or Pacific Biosciences generate long-read data that preserve long-range genomic information but have high error rates. Here, the authors develop MetaMaps, a computational tool for strain-level metagenomic assignment and compositional estimation using long reads.
Mash Screen: high-throughput sequence containment estimation for genome discovery
The MinHash algorithm has proven effective for rapidly estimating the resemblance of two genomes or metagenomes. However, this method cannot reliably estimate the containment of a genome within a metagenome. Here, we describe an online algorithm capable of measuring the containment of genomes and proteomes within either assembled or unassembled sequencing read sets. We describe several use cases, including contamination screening and retrospective analysis of metagenomes for novel genome discovery. Using this tool, we provide containment estimates for every NCBI RefSeq genome within every SRA metagenome and demonstrate the identification of a novel polyomavirus species from a public metagenome.
Hybrid error correction and de novo assembly of single-molecule sequencing reads
Single-molecule sequencing technologies can produce multikilobase-long reads, which are more useful than short reads for assembling genomes and transcriptomes, but their error rates are too high. Koren et al . correct long reads from a PacBio instrument using high-fidelity, short reads from complementary technologies, facilitating assembly of previously intractable sequences. Single-molecule sequencing instruments can generate multikilobase sequences with the potential to greatly improve genome and transcriptome assembly. However, the error rates of single-molecule reads are high, which has limited their use thus far to resequencing bacteria. To address this limitation, we introduce a correction algorithm and assembly strategy that uses short, high-fidelity sequences to correct the error in single-molecule sequences. We demonstrate the utility of this approach on reads generated by a PacBio RS instrument from phage, prokaryotic and eukaryotic whole genomes, including the previously unsequenced genome of the parrot Melopsittacus undulatus , as well as for RNA-Seq reads of the corn ( Zea mays ) transcriptome. Our long-read correction achieves >99.9% base-call accuracy, leading to substantially better assemblies than current sequencing strategies: in the best example, the median contig size was quintupled relative to high-coverage, second-generation assemblies. Greater gains are predicted if read lengths continue to increase, including the prospect of single-contig bacterial chromosome assembly.
RefSeq database growth influences the accuracy of k-mer-based lowest common ancestor species identification
In order to determine the role of the database in taxonomic sequence classification, we examine the influence of the database over time on k -mer-based lowest common ancestor taxonomic classification. We present three major findings: the number of new species added to the NCBI RefSeq database greatly outpaces the number of new genera; as a result, more reads are classified with newer database versions, but fewer are classified at the species level; and Bayesian-based re-estimation mitigates this effect but struggles with novel genomes. These results suggest a need for new classification approaches specially adapted for large databases.