Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
278 result(s) for "Phillips, Cheryl A."
Sort by:
Whole-Genome Random Sequencing and Assembly of Haemophilus Influenzae Rd
An approach for genome analysis based on sequencing and assembly of unselected pieces of DNA from the whole chromosome has been applied to obtain the complete nucleotide sequence (1,830, 137 base pairs) of the genome from the bacterium Haemophilus influenzae Rd. This approach eliminates the need for initial mapping efforts and is therefore applicable to the vast array of microbial species for which genome maps are unavailable. The H. influenzae Rd genome sequence (Genome Sequence DataBase accession number L42023) represents the only complete genome sequence from a free-living organism.
The Minimal Gene Complement of Mycoplasma genitalium
The complete nucleotide sequence (580,070 base pairs) of the Mycoplasma genitalium genome, the smallest known genome of any free-living organism, has been determined by whole-genome random sequencing and assembly. A total of only 470 predicted coding regions were identified that include genes required for DNA replication, transcription and translation, DNA repair, cellular transport, and energy metabolism. Comparison of this genome to that of Haemophilus influenzae suggests that differences in genome content are reflected as profound differences in physiology and metabolic capacity between these two organisms.