Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
671 result(s) for "Phillips, O. L."
Sort by:
Drought sensitivity of Amazonian carbon balance revealed by atmospheric measurements
Carbon dioxide and carbon monoxide measurements across the Amazon basin for 2010 and 2011 reveal that drought rather than temperature caused the observed halt in forest productivity during the anomalously dry year of 2010. The Amazon basin — sink or source? Amazonia stores large amounts of carbon, but our understanding of the sensitivity of the tropical terrestrial carbon budget to climate anomalies remains uncertain. An analysis of seasonal and annual carbon balances based on basin-wide atmospheric measurements of carbon dioxide and monoxide for anomalously dry and wet years together with forest plot data suggest that water availability has an important role in determining the carbon balance in the Amazon basin. Drought reduced plant production and limited the amount of carbon that could be stored in vegetation; at the same time large amounts of carbon were released by fire during the dry year. The region was carbon neutral during the wet year, because of reduced carbon loss through fires and increased carbon uptake by vegetation. Feedbacks between land carbon pools and climate provide one of the largest sources of uncertainty in our predictions of global climate 1 , 2 . Estimates of the sensitivity of the terrestrial carbon budget to climate anomalies in the tropics and the identification of the mechanisms responsible for feedback effects remain uncertain 3 , 4 . The Amazon basin stores a vast amount of carbon 5 , and has experienced increasingly higher temperatures and more frequent floods and droughts over the past two decades 6 . Here we report seasonal and annual carbon balances across the Amazon basin, based on carbon dioxide and carbon monoxide measurements for the anomalously dry and wet years 2010 and 2011, respectively. We find that the Amazon basin lost 0.48 ± 0.18 petagrams of carbon per year (Pg C yr −1 ) during the dry year but was carbon neutral (0.06 ± 0.1 Pg C yr −1 ) during the wet year. Taking into account carbon losses from fire by using carbon monoxide measurements, we derived the basin net biome exchange (that is, the carbon flux between the non-burned forest and the atmosphere) revealing that during the dry year, vegetation was carbon neutral. During the wet year, vegetation was a net carbon sink of 0.25 ± 0.14 Pg C yr −1 , which is roughly consistent with the mean long-term intact-forest biomass sink of 0.39 ± 0.10 Pg C yr −1 previously estimated from forest censuses 7 . Observations from Amazonian forest plots suggest the suppression of photosynthesis during drought as the primary cause for the 2010 sink neutralization. Overall, our results suggest that moisture has an important role in determining the Amazonian carbon balance. If the recent trend of increasing precipitation extremes persists 6 , the Amazon may become an increasing carbon source as a result of both emissions from fires and the suppression of net biome exchange by drought.
Drought impact on forest carbon dynamics and fluxes in Amazonia
Severe drought in a tropical forest ecosystem suppresses photosynthetic carbon uptake and plant maintenance respiration, but growth is maintained, suggesting that, overall, less carbon is available for tree tissue maintenance and defence, which may cause the subsequent observed increase in tree mortality. Effect of short-term drought on forest ecosytems The underlying mechanisms that determine the response of tropical forest ecosystems to drought remain poorly understood. Based on observations from a network of intensively measured forest plots in the Amazon basin, this study shows that severe drought suppresses photosynthetic carbon uptake and plant maintenance respiration. Plant growth is maintained however, suggesting that less carbon is available for tree tissue maintenance and defence — which may explain the observed increase in tree mortality that follows a drought. In 2005 and 2010 the Amazon basin experienced two strong droughts 1 , driven by shifts in the tropical hydrological regime 2 possibly associated with global climate change 3 , as predicted by some global models 3 . Tree mortality increased after the 2005 drought 4 , and regional atmospheric inversion modelling showed basin-wide decreases in CO 2 uptake in 2010 compared with 2011 (ref. 5 ). But the response of tropical forest carbon cycling to these droughts is not fully understood and there has been no detailed multi-site investigation in situ . Here we use several years of data from a network of thirteen 1-ha forest plots spread throughout South America, where each component of net primary production (NPP), autotrophic respiration and heterotrophic respiration is measured separately, to develop a better mechanistic understanding of the impact of the 2010 drought on the Amazon forest. We find that total NPP remained constant throughout the drought. However, towards the end of the drought, autotrophic respiration, especially in roots and stems, declined significantly compared with measurements in 2009 made in the absence of drought, with extended decreases in autotrophic respiration in the three driest plots. In the year after the drought, total NPP remained constant but the allocation of carbon shifted towards canopy NPP and away from fine-root NPP. Both leaf-level and plot-level measurements indicate that severe drought suppresses photosynthesis. Scaling these measurements to the entire Amazon basin with rainfall data, we estimate that drought suppressed Amazon-wide photosynthesis in 2010 by 0.38 petagrams of carbon (0.23–0.53 petagrams of carbon). Overall, we find that during this drought, instead of reducing total NPP, trees prioritized growth by reducing autotrophic respiration that was unrelated to growth. This suggests that trees decrease investment in tissue maintenance and defence, in line with eco-evolutionary theories that trees are competitively disadvantaged in the absence of growth 6 . We propose that weakened maintenance and defence investment may, in turn, cause the increase in post-drought tree mortality observed at our plots.
Height-diameter allometry of tropical forest trees
Tropical tree height-diameter (H:D) relationships may vary by forest type and region making large-scale estimates of above-ground biomass subject to bias if they ignore these differences in stem allometry. We have therefore developed a new global tropical forest database consisting of 39 955 concurrent H and D measurements encompassing 283 sites in 22 tropical countries. Utilising this database, our objectives were: 1. to determine if H:D relationships differ by geographic region and forest type (wet to dry forests, including zones of tension where forest and savanna overlap). 2. to ascertain if the H:D relationship is modulated by climate and/or forest structural characteristics (e.g. stand-level basal area, A). 3. to develop H:D allometric equations and evaluate biases to reduce error in future local-to-global estimates of tropical forest biomass. Annual precipitation coefficient of variation (PV), dry season length (SD), and mean annual air temperature (TA) emerged as key drivers of variation in H:D relationships at the pantropical and region scales. Vegetation structure also played a role with trees in forests of a high A being, on average, taller at any given D. After the effects of environment and forest structure are taken into account, two main regional groups can be identified. Forests in Asia, Africa and the Guyana Shield all have, on average, similar H:D relationships, but with trees in the forests of much of the Amazon Basin and tropical Australia typically being shorter at any given D than their counterparts elsewhere. The region-environment-structure model with the lowest Akaike's information criterion and lowest deviation estimated stand-level H across all plots to within amedian −2.7 to 0.9% of the true value. Some of the plot-to-plot variability in H:D relationships not accounted for by this model could be attributed to variations in soil physical conditions. Other things being equal, trees tend to be more slender in the absence of soil physical constraints, especially at smaller D. Pantropical and continental-level models provided less robust estimates of H, especially when the roles of climate and stand structure in modulating H:D allometry were not simultaneously taken into account.
What controls tropical forest architecture? Testing environmental, structural and floristic drivers
Aim: To test the extent to which the vertical structure of tropical forests is determined by environment, forest structure or biogeographical history. Location: Pan-tropical. Methods: Using height and diameter data from 20,497 trees in 112 non-contiguous plots, asymptotic maximum height (H AM ) and height—diameter relationships were computed with nonlinear mixed effects (NLME) models to: (1) test for environmental and structural causes of differences among plots, and (2) test if there were continental differences once environment and structure were accounted for; persistence of differences may imply the importance of biogeography for vertical forest structure. NLME analyses for floristic subsets of data (only/excluding Fabaceae and only/excluding Dipterocarpaceae individuals) were used to examine whether family-level patterns revealed biogeographical explanations of cross-continental differences. Results: H AM and allometry were significantly different amongst continents. H AM was greatest in Asian forests (58.3 ± 7.5 m, 95% CI), followed by forests in Africa (45.1 ± 2.6 m), America (35.8 ± 6.0 m) and Australia (35.0 ± 7.4 m), and height—diameter relationships varied similarly; for a given diameter, stems were tallest in Asia, followed by Africa, America and Australia. Precipitation seasonality, basal area, stem density, solar radiation and wood density each explained some variation in allometry and H AM yet continental differences persisted even after these were accounted for. Analyses using floristic subsets showed that significant continental differences in H AM and allometry persisted in all cases. Main conclusions: Tree allometry and maximum height are altered by environmental conditions, forest structure and wood density. Yet, even after accounting for these, tropical forest architecture varies significantly from continent to continent. The greater stature of tropical forests in Asia is not directly determined by the dominance of the family Dipterocarpaceae, as on average non-dipterocarps are equally tall. We hypothesise that dominant large-statured families create conditions in which only tall species can compete, thus perpetuating a forest dominated by tall individuals from diverse families.
Edaphic, structural and physiological contrasts across Amazon Basin forest–savanna ecotones suggest a role for potassium as a key modulator of tropical woody vegetation structure and function
Sampling along a precipitation gradient in tropical South America extending from ca. 0.8 to 2.0 m a−1, savanna soils had consistently lower exchangeable cation concentrations and higher C / N ratios than nearby forest plots. These soil differences were also reflected in canopy averaged leaf traits with savanna trees typically having higher leaf mass per unit area but lower mass-based nitrogen (Nm) and potassium (Km). Both Nm and Km also increased with declining mean annual precipitation (PA), but most area-based leaf traits such as leaf photosynthetic capacity showed no systematic variation with PA or vegetation type. Despite this invariance, when taken in conjunction with other measures such as mean canopy height, area-based soil exchangeable potassium content, [K]sa , proved to be an excellent predictor of several photosynthetic properties (including 13C isotope discrimination). Moreover, when considered in a multivariate context with PA and soil plant available water storage capacity (θP) as covariates, [K]sa also proved to be an excellent predictor of stand-level canopy area, providing drastically improved fits as compared to models considering just PA and/or θP. Neither calcium, nor magnesium, nor soil pH could substitute for potassium when tested as alternative model predictors (ΔAIC > 10). Nor for any model could simple soil texture metrics such as sand or clay content substitute for either [K]sa or θP. Taken in conjunction with recent work in Africa and the forests of the Amazon Basin, this suggests – in combination with some newly conceptualised interacting effects of PA and θP also presented here – a critical role for potassium as a modulator of tropical vegetation structure and function.
The carbon balance of South America: a review of the status, decadal trends and main determinants
We summarise the contemporary carbon budget of South America and relate it to its dominant controls: population and economic growth, changes in land use practices and a changing atmospheric environment and climate. Component flux estimate methods we consider sufficiently reliable for this purpose encompass fossil fuel emission inventories, biometric analysis of old-growth rainforests, estimation of carbon release associated with deforestation based on remote sensing and inventories, and agricultural export data. Alternative methods for the estimation of the continental-scale net land to atmosphere CO2 flux, such as atmospheric transport inverse modelling and terrestrial biosphere model predictions, are, we find, hampered by the data paucity, and improved parameterisation and validation exercises are required before reliable estimates can be obtained. From our analysis of available data, we suggest that South America was a net source to the atmosphere during the 1980s (~ 0.3–0.4 Pg C a−1) and close to neutral (~ 0.1 Pg C a−1) in the 1990s. During the latter period, carbon uptake in old-growth forests nearly compensated for the carbon release associated with fossil fuel burning and deforestation. Annual mean precipitation over tropical South America as inferred from Amazon River discharge shows a long-term upward trend. Although, over the last decade dry seasons have tended to be drier, with the years 2005 and 2010 in particular experiencing strong droughts. On the other hand, precipitation during the wet seasons also shows an increasing trend. Air temperatures have also increased slightly. Also with increases in atmospheric CO2 concentrations, it is currently unclear what effect these climate changes are having on the forest carbon balance of the region. Current indications are that the forests of the Amazon Basin have acted as a substantial long-term carbon sink, but with the most recent measurements suggesting that this sink may be weakening. Economic development of the tropical regions of the continent is advancing steadily, with exports of agricultural products being an important driver and witnessing a strong upturn over the last decade.
Analysing Amazonian forest productivity using a new individual and trait-based model (TFS v.1)
Repeated long-term censuses have revealed large-scale spatial patterns in Amazon basin forest structure and dynamism, with some forests in the west of the basin having up to a twice as high rate of aboveground biomass production and tree recruitment as forests in the east. Possible causes for this variation could be the climatic and edaphic gradients across the basin and/or the spatial distribution of tree species composition. To help understand causes of this variation a new individual-based model of tropical forest growth, designed to take full advantage of the forest census data available from the Amazonian Forest Inventory Network (RAINFOR), has been developed. The model allows for within-stand variations in tree size distribution and key functional traits and between-stand differences in climate and soil physical and chemical properties. It runs at the stand level with four functional traits - leaf dry mass per area (Ma ), leaf nitrogen (NL ) and phosphorus (PL ) content and wood density (DW ) varying from tree to tree - in a way that replicates the observed continua found within each stand. We first applied the model to validate canopy-level water fluxes at three eddy covariance flux measurement sites. For all three sites the canopy-level water fluxes were adequately simulated. We then applied the model at seven plots, where intensive measurements of carbon allocation are available. Tree-by-tree multi-annual growth rates generally agreed well with observations for small trees, but with deviations identified for larger trees. At the stand level, simulations at 40 plots were used to explore the influence of climate and soil nutrient availability on the gross (ΠG ) and net (ΠN ) primary production rates as well as the carbon use efficiency (CU ). Simulated ΠG , ΠN and CU were not associated with temperature. On the other hand, all three measures of stand level productivity were positively related to both mean annual precipitation and soil nutrient status. Sensitivity studies showed a clear importance of an accurate parameterisation of within- and between-stand trait variability on the fidelity of model predictions. For example, when functional tree diversity was not included in the model (i.e. with just a single plant functional type with mean basin-wide trait values) the predictive ability of the model was reduced. This was also the case when basin-wide (as opposed to site-specific) trait distributions were applied within each stand. We conclude that models of tropical forest carbon, energy and water cycling should strive to accurately represent observed variations in functionally important traits across the range of relevant scales.
Structural, physiognomic and above-ground biomass variation in savanna–forest transition zones on three continents – how different are co-occurring savanna and forest formations?
Through interpretations of remote-sensing data and/or theoretical propositions, the idea that forest and savanna represent \"alternative stable states\" is gaining increasing acceptance. Filling an observational gap, we present detailed stratified floristic and structural analyses for forest and savanna stands located mostly within zones of transition (where both vegetation types occur in close proximity) in Africa, South America and Australia. Woody plant leaf area index variation was related to tree canopy cover in a similar way for both savanna and forest with substantial overlap between the two vegetation types. As total woody plant canopy cover increased, so did the relative contribution of middle and lower strata of woody vegetation. Herbaceous layer cover declined as woody cover increased. This pattern of understorey grasses and herbs progressively replaced by shrubs as the canopy closes over was found for both savanna and forests and on all continents. Thus, once subordinate woody canopy layers are taken into account, a less marked transition in woody plant cover across the savanna–forest-species discontinuum is observed compared to that inferred when trees of a basal diameter > 0.1 m are considered in isolation. This is especially the case for shrub-dominated savannas and in taller savannas approaching canopy closure. An increased contribution of forest species to the total subordinate cover is also observed as savanna stand canopy closure occurs. Despite similarities in canopy-cover characteristics, woody vegetation in Africa and Australia attained greater heights and stored a greater amount of above-ground biomass than in South America. Up to three times as much above-ground biomass is stored in forests compared to savannas under equivalent climatic conditions. Savanna–forest transition zones were also found to typically occur at higher precipitation regimes for South America than for Africa. Nevertheless, consistent across all three continents coexistence was found to be confined to a well-defined edaphic–climate envelope with soil and climate the key determinants of the relative location of forest and savanna stands. Moreover, when considered in conjunction with the appropriate water availability metrics, it emerges that soil exchangeable cations exert considerable control on woody canopy-cover extent as measured in our pan-continental (forest + savanna) data set. Taken together these observations do not lend support to the notion of alternate stable states mediated through fire feedbacks as the prime force shaping the distribution of the two dominant vegetation types of the tropical lands.
The sensitivity of wood production to seasonal and interannual variations in climate in a lowland Amazonian rainforest
Understanding climatic controls on tropical forest productivity is key to developing more reliable models for predicting how tropical biomes may respond to climate change. Currently there is no consensus on which factors control seasonal changes in tropical forest tree growth. This study reports the first comprehensive plot-level description of the seasonality of growth in a Peruvian tropical forest. We test whether seasonal and interannual variations in climate are correlated with changes in biomass increment, and whether such relationships differ among trees with different functional traits. We found that biomass increments, measured every 3 months on the two plots, were reduced by between 40 and 55 % in the peak dry season (July-September) relative to peak wet season (January–March). The seasonal patterns of biomass accumulation are significantly (p < 0.01) associated with seasonal patterns of rainfall and soil water content; however, this may reflect a synchrony of seasonal cycles rather than direct physiological controls on tree growth rates. The strength of the growth seasonality response among trees is significantly correlated to functional traits: consistent with a hypothesised tradeoff between maximum potential growth rate and hydraulic safety, tall and fast-growing trees with broad stems had the most strongly seasonal biomass accumulation, suggesting that they are more productive in the wet season, but more vulnerable to water limitation in the dry season.
The potential for REDD+ to reduce forest degradation in Vietnam
Natural forests in Vietnam have experienced rapid declines in the last 70 years, as a result of degradation from logging and conversion of natural forests to timber and rubber plantations. Degradation of natural forests leads to loss of biodiversity and ecosystem services, impacting the livelihoods of surrounding communities. Efforts to address ongoing loss of natural forests, through mechanisms such as Reduced Emissions from Deforestation and Degradation (REDD+), require an understanding of the links between forest degradation and the livelihoods of local communities, which have rarely been studied in Vietnam. We combined information from livelihood surveys, remote sensing and forest inventories around a protected natural forest area in North Central Vietnam. For forest-adjacent communities, we found natural forests contributed an average of 28% of total household income with plantation forests contributing an additional 15%. Although officially prohibited, logging contributed more than half of the total income derived from natural forests. Analysis of Landsat images over the period 1990 to 2014 combined with forest inventory data, demonstrates selective logging was leading to ongoing degradation of natural forests resulting in loss of 3.3 ± 0.8 Mg biomass ha−1 yr−1 across the protected area. This is equivalent to 1.5% yr−1 of total forest biomass, with rates as high as 3% yr−1 in degraded and easily accessible parts of the protected area. We estimate that preventing illegal logging would incur local opportunity costs of USD $4.10 ± 0.90 per Mg CO2, similar to previous estimates for tropical forest protected areas and substantially less than the opportunity costs in timber or agricultural concessions. Our analysis suggests activities to reduce forest degradation in protected areas are likely to be financially viable through Vietnam's REDD+ program.