Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
24 result(s) for "Phillips, Valerie K."
Sort by:
Endogenous growth factor stimulation of hemocyte proliferation induces resistance to Schistosoma mansoni challenge in the snail host
Digenean trematodes are a large, complex group of parasitic flatworms that infect an incredible diversity of organisms, including humans. Larval development of most digeneans takes place within a snail (Gastropoda). Compatibility between snails and digeneans is often very specific, such that suitable snail hosts define the geographical ranges of diseases caused by these worms. The immune cells (hemocytes) of a snail are sentinels that act as a crucial barrier to infection by larval digeneans. Hemocytes coordinate a robust and specific immunological response, participating directly in parasite killing by encapsulating and clearing the infection. Hemocyte proliferation and differentiation are influenced by unknown digenean-specific exogenous factors. However, we know nothing about the endogenous control of hemocyte development in any gastropod model. Here, we identify and functionally characterize a progranulin [Biomphalaria glabrata granulin (BgGRN)] from the snail B. glabrata, a natural host for the human blood fluke Schistosoma mansoni. Granulins are growth factors that drive proliferation of immune cells in organisms, spanning the animal kingdom. We demonstrate that BgGRN induces proliferation of B. glabrata hemocytes, and specifically drives the production of an adherent hemocyte subset that participates centrally in the anti-digenean defense response. Additionally, we demonstrate that susceptible B. glabrata snails can be made resistant to infection with S. mansoni by first inducing hemocyte proliferation with BgGRN. This marks the functional characterization of an endogenous growth factor of a gastropod mollusc, and provides direct evidence of gain of resistance in a snail-digenean infection model using a defined factor to induce snail resistance to infection.
Genuine Health Literacy and Oral Methods of Teaching: A Model for Rural Moroccan Women
Studies in public health and the emerging field of health literacy consider the appropriateness of educational resources used with high-risk populations. Rural women in Morocco with limited educational backgrounds and/or limited access to health services fit into the high-risk category on several levels. Health education research does not consider how oral methods of teaching, such as traditional art forms of storytelling and drama, contribute to the process of understanding and using health information as part of the cultural dynamic in constructing meaning for oral learners. This grounded theory study explores how rural women in Morocco construct meaning leading to understanding and using health information presented through oral methods of teaching. The research focused on personal interviews with a sample of Moroccan women who had learning experiences in the past with oral methods of teaching. Coding and analysis of the interview data revealed broad categories contributing to general themes on oral methods of teaching. The central understanding to emerge from this study was that in the context of rural Morocco information presented through oral methods of teaching resulted in genuine health literacy for women with limited literacy. Emerging themes showed that oral methods of teaching (1) fit within the relational and educational dynamic that are part of the participants’ socio-cultural context; (2) created a positive and appealing learning experience that helped the participants remember the health message information; (3) led participants to construct meaning in the learning process to understand the information; and (4) contributed to motivating the use of information provided. This qualitative study provides interdisciplinary insight into cross-cultural health education. Findings contribute significant theoretical understanding of the learners’ process of creating meaning in health education. Health educators working internationally or in a multicultural context will benefit from principles of teaching and lesson development for adults with limited literacy or for adults who are oral in learning preference style.
A tension-mediated glycocalyx–integrin feedback loop promotes mesenchymal-like glioblastoma
Glioblastoma multiforme (GBMs) are recurrent lethal brain tumours. Recurrent GBMs often exhibit mesenchymal, stem-like phenotypes that could explain their resistance to therapy. Analyses revealed that recurrent GBMs have increased tension and express high levels of glycoproteins that increase the bulkiness of the glycocalyx. Studies showed that a bulky glycocalyx potentiates integrin mechanosignalling and tissue tension and promotes a mesenchymal, stem-like phenotype in GBMs. Gain- and loss-of-function studies implicated integrin mechanosignalling as an inducer of GBM growth, survival, invasion and treatment resistance, and a mesenchymal, stem-like phenotype. Mesenchymal-like GBMs were highly contractile and expressed elevated levels of glycoproteins that expanded their glycocalyx, and they were surrounded by a stiff extracellular matrix that potentiated integrin mechanosignalling. Our findings suggest that there is a dynamic and reciprocal link between integrin mechanosignalling and a bulky glycocalyx, implying a causal link towards a mesenchymal, stem-like phenotype in GBMs. Strategies to ameliorate GBM tissue tension offer a therapeutic approach to reduce mortality due to GBM. Barnes et al. report a dynamic and reciprocal crosstalk between tissue tension and glycocalyx bulkiness that promotes a mesenchymal, stem-like phenotype in GBM.
Tissue mechanics promote IDH1-dependent HIF1α–tenascin C feedback to regulate glioblastoma aggression
Increased overall survival for patients with glioma brain tumours is associated with mutations in the metabolic regulator isocitrate dehydrogenase 1 (IDH1). Gliomas develop within a mechanically challenged microenvironment that is characterized by a dense extracellular matrix (ECM) that compromises vascular integrity to induce hypoxia and activate HIF1α. We found that glioma aggression and patient prognosis correlate with HIF1α levels and the stiffness of a tenascin C (TNC)-enriched ECM. Gain- and loss-of-function xenograft manipulations demonstrated that a mutant IDH1 restricts glioma aggression by reducing HIF1α-dependent TNC expression to decrease ECM stiffness and mechanosignalling. Recurrent IDH1-mutant patient gliomas had a stiffer TNC-enriched ECM that our studies attributed to reduced miR-203 suppression of HIF1α and TNC mediated via a tension-dependent positive feedback loop. Thus, our work suggests that elevated ECM stiffness can independently foster glioblastoma aggression and contribute to glioblastoma recurrence via bypassing the protective activity of IDH1 mutational status. Weaver and colleagues report that enrichment of the extracellular matrix with tenascin C promotes aggressiveness of IDH1-mutant glioblastoma by activating a HIF1α-controlled mechanosignalling feedback loop.
Estimating the Harms of Nicotine-Containing Products Using the MCDA Approach
Background: An international expert panel convened by the Independent Scientific Committee on Drugs developed a multi-criteria decision analysis model of the relative importance of different types of harm related to the use of nicotine-containing products. Method: The group defined 12 products and 14 harm criteria. Seven criteria represented harms to the user, and the other seven indicated harms to others. The group scored all the products on each criterion for their average harm worldwide using a scale with 100 defined as the most harmful product on a given criterion, and a score of zero defined as no harm. The group also assessed relative weights for all the criteria to indicate their relative importance. Findings: Weighted averages of the scores provided a single, overall score for each product. Cigarettes (overall weighted score of 100) emerged as the most harmful product, with small cigars in second place (overall weighted score of 64). After a substantial gap to the third-place product, pipes (scoring 21), all remaining products scored 15 points or less. Interpretation: Cigarettes are the nicotine product causing by far the most harm to users and others in the world today. Attempts to switch to non-combusted sources of nicotine should be encouraged as the harms from these products are much lower.
Interpretation of morphogen gradients by a synthetic bistable circuit
During development, cells gain positional information through the interpretation of dynamic morphogen gradients. A proposed mechanism for interpreting opposing morphogen gradients is mutual inhibition of downstream transcription factors, but isolating the role of this specific motif within a natural network remains a challenge. Here, we engineer a synthetic morphogen-induced mutual inhibition circuit in E. coli populations and show that mutual inhibition alone is sufficient to produce stable domains of gene expression in response to dynamic morphogen gradients, provided the spatial average of the morphogens falls within the region of bistability at the single cell level. When we add sender devices, the resulting patterning circuit produces theoretically predicted self-organised gene expression domains in response to a single gradient. We develop computational models of our synthetic circuits parameterised to timecourse fluorescence data, providing both a theoretical and experimental framework for engineering morphogen-induced spatial patterning in cell populations. Morphogen gradients can be dynamic and transient yet give rise to stable cellular patterns. Here the authors show that a synthetic morphogen-induced mutual inhibition circuit produces stable boundaries when the spatial average of morphogens falls within the region of bistability.
Oncogenic PIK3CA induces centrosome amplification and tolerance to genome doubling
Mutations in PIK3CA are very frequent in cancer and lead to sustained PI3K pathway activation. The impact of acute expression of mutant PIK3CA during early stages of malignancy is unknown. Using a mouse model to activate the Pik3ca H1047R hotspot mutation in the heterozygous state from its endogenous locus, we here report that mutant Pik3ca induces centrosome amplification in cultured cells (through a pathway involving AKT, ROCK and CDK2/Cyclin E-nucleophosmin) and in mouse tissues, and increased in vitro cellular tolerance to spontaneous genome doubling. We also present evidence that the majority of PIK3CA H1047R mutations in the TCGA breast cancer cohort precede genome doubling. These previously unappreciated roles of PIK3CA mutation show that PI3K signalling can contribute to the generation of irreversible genomic changes in cancer. While this can limit the impact of PI3K-targeted therapies, these findings also open the opportunity for therapeutic approaches aimed at limiting tumour heterogeneity and evolution. Activated PI3K causes cancer, but the role of active PI3K mutations in early stages of malignancy are unclear. Here, the authors show in a mouse model that active PI3K induces centrosome amplification via AKT, ROCK, CDK2/Cyclin E and nucleophosmin, and increased tolerance of genome doubling.
Projected Lifetime Healthcare Costs Associated with HIV Infection
Estimates of healthcare costs associated with HIV infection would provide valuable insight for evaluating the cost-effectiveness of possible prevention interventions. We evaluate the additional lifetime healthcare cost incurred due to living with HIV. We used a stochastic computer simulation model to project the distribution of lifetime outcomes and costs of men-who-have-sex-with-men (MSM) infected with HIV in 2013 aged 30, over 10,000 simulations. We assumed a resource-rich setting with no loss to follow-up, and that standards and costs of healthcare management remain as now. Based on a median (interquartile range) life expectancy of 71.5 (45.0-81.5) years for MSM in such a setting, the estimated mean lifetime cost of treating one person was £ 360,800 ($567,000 or € 480,000). With 3.5% discounting, it was £ 185,200 ($291,000 or € 246,000). The largest proportion (68%) of these costs was attributed to antiretroviral drugs. If patented drugs are replaced by generic versions (at 20% cost of patented prices), estimated mean lifetime costs reduced to £ 179,000 ($ 281,000 or € 238,000) and £ 101,200 ($ 158,900 or € 134,600) discounted. If 3,000 MSM had been infected in 2013, then future lifetime costs relating to HIV care is likely to be in excess of £ 1 billion. It is imperative for investment into prevention programmes to be continued or scaled-up in settings with good access to HIV care services. Costs would be reduced considerably with use of generic antiretroviral drugs.
Impact of late diagnosis and treatment on life expectancy in people with HIV-1: UK Collaborative HIV Cohort (UK CHIC) Study
Objectives To estimate life expectancy for people with HIV undergoing treatment compared with life expectancy in the general population and to assess the impact on life expectancy of late treatment, defined as CD4 count <200 cells/mm3 at start of antiretroviral therapy.Design Cohort study.Setting Outpatient HIV clinics throughout the United Kingdom.Population Adult patients from the UK Collaborative HIV Cohort (UK CHIC) Study with CD4 count ≤350 cells/mm3 at start of antiretroviral therapy in 1996-2008.Main outcome measures Life expectancy at the exact age of 20 (the average additional years that will be lived by a person after age 20), according to the cross sectional age specific mortality rates during the study period.Results 1248 of 17 661 eligible patients died during 91 203 person years’ follow-up. Life expectancy (standard error) at exact age 20 increased from 30.0 (1.2) to 45.8 (1.7) years from 1996-9 to 2006-8. Life expectancy was 39.5 (0.45) for male patients and 50.2 (0.45) years for female patients compared with 57.8 and 61.6 years for men and women in the general population (1996-2006). Starting antiretroviral therapy later than guidelines suggest resulted in up to 15 years’ loss of life: at age 20, life expectancy was 37.9 (1.3), 41.0 (2.2), and 53.4 (1.2) years in those starting antiretroviral therapy with CD4 count <100, 100-199, and 200-350 cells/mm3, respectively.Conclusions Life expectancy in people treated for HIV infection has increased by over 15 years during 1996-2008, but is still about 13 years less than that of the UK population. The higher life expectancy in women is magnified in those with HIV. Earlier diagnosis and subsequent timely treatment with antiretroviral therapy might increase life expectancy.