Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
63 result(s) for "Physiologie, Environnement et Génétique pour l"
Sort by:
Sanitary housing conditions modify the performance and behavioural response of weaned pigs to feed- and housing-related stressors
Pigs are confronted with changes in farming practices that may affect performance and animal well-being. The sanitary conditions of the farm can have an impact on the ability of pigs to adapt to these changes. This study aimed to analyse how weaned pigs respond to common farming practices of changes in diet and housing in terms of performance, health and behaviour, and how these responses are affected by the sanitary housing conditions, qualified here as good or poor. At weaning at 4 weeks of age, 20 piglets were assigned to 10 blocks of two littermates and each pig within a litter was randomly assigned to one of two sanitary conditions. Pigs were housed individually and received a starter diet. A diet change occurred on day 12 post weaning (starter to weaner diets) and pigs were transferred to the grower unit on day 33 post weaning and continued to receive the weaner diet. From 43 days post weaning, pigs were offered a grower diet and were vaccinated against swine influenza on day 47 and 61 post weaning. On the basis of this design, three post-weaning phases were identified: phase I from day 1 to 11 (post weaning), phase II from day 12 to 32 (after the diet change) and phase III from day 33 to 42 (after the housing change). Individual BW was measured every 3 days, and feed refusals and faecal scores were recorded on a daily basis. Behavioural observations were performed during 28 days by using the instantaneous scan sampling method. Individual blood samples were collected at the end of each phase to analyse the plasma concentration of haptoglobin and on day 68 post weaning to analyse the anti-influenza immunoglobulins G (IgG). Poor sanitary conditions resulted in a decrease in daily gain, feed intake and gain to feed ratio of, respectively, 11%, 5% and 7% (P < 0.05). Pigs in poor sanitary conditions had higher faecal scores (P < 0.05), tended to have higher plasma haptoglobin concentration in phase II (P = 0.06) and had a higher anti-influenza IgG titre (P = 0.11). The diet change affected performance and behavioural responses of pigs in poor but not in good sanitary conditions. Housing change resulted in a 30% decrease in growth and an increase in behaviour oriented towards exploration and excitement. The results of this study show an effect of sanitary conditions on the responses of pigs to a diet change, whereas those to a housing change were little affected by the sanitary conditions.
Classification of pig calls produced from birth to slaughter according to their emotional valence and context of production
Vocal expression of emotions has been observed across species and could provide a non-invasive and reliable means to assess animal emotions. We investigated if pig vocal indicators of emotions revealed in previous studies are valid across call types and contexts, and could potentially be used to develop an automated emotion monitoring tool. We performed an analysis of an extensive and unique dataset of low (LF) and high frequency (HF) calls emitted by pigs across numerous commercial contexts from birth to slaughter (7414 calls from 411 pigs). Our results revealed that the valence attributed to the contexts of production (positive versus negative) affected all investigated parameters in both LF and HF. Similarly, the context category affected all parameters. We then tested two different automated methods for call classification; a neural network revealed much higher classification accuracy compared to a permuted discriminant function analysis (pDFA), both for the valence (neural network: 91.5%; pDFA analysis weighted average across LF and HF (cross-classified): 61.7% with a chance level at 50.5%) and context (neural network: 81.5%; pDFA analysis weighted average across LF and HF (cross-classified): 19.4% with a chance level at 14.3%). These results suggest that an automated recognition system can be developed to monitor pig welfare on-farm.
Estimation of gestating sows’ welfare status based on machine learning methods and behavioral data
Estimating the welfare status at an individual level on the farm is a current issue to improve livestock animal monitoring. New technologies showed opportunities to analyze livestock behavior with machine learning and sensors. The aim of the study was to estimate some components of the welfare status of gestating sows based on machine learning methods and behavioral data. The dataset used was a combination of individual and group measures of behavior (activity, social and feeding behaviors). A clustering method was used to estimate the welfare status of 69 sows (housed in four groups) during different periods (sum of 2 days per week) of gestation (between 6 and 10 periods, depending on the group). Three clusters were identified and labelled (scapegoat, gentle and aggressive). Environmental conditions and the sows’ health influenced the proportion of sows in each cluster, contrary to the characteristics of the sow (age, body weight or body condition). The results also confirmed the importance of group behavior on the welfare of each individual. A decision tree was learned and used to classify the sows into the three categories of welfare issued from the clustering step. This classification relied on data obtained from an automatic feeder and automated video analysis, achieving an accuracy rate exceeding 72%. This study showed the potential of an automatic decision support system to categorize welfare based on the behavior of each gestating sow and the group of sows.
A multi-suckling system combined with an enriched housing environment during the growing period promotes resilience to various challenges in pigs
Little is known about the impact of social and environmental enrichment on improving livestock resilience, i.e. the ability to quickly recover from perturbations. We evaluated the effect of an alternative housing system (AHS) on resilience of pigs, as compared to conventional housing (CONV). The AHS consisted of multi-litter housing during lactation, delayed weaning, extra space allowance and environmental enrichment at all times. We assessed recovery to a 2 h-transport challenge, an LPS injection, 2 h-heat stress and a biopsy wound in 96 pigs. Additionally, indicators of long-term “wear and tear” on the body were determined. AHS pigs had better physiological recoveries with quicker returns to baseline in the transport and LPS challenges, showed lower cortisol accumulation in hairs and lower variance in weight gain over the experimental period compared to conventionally-housed (CONV) pigs. They also had higher levels of natural antibodies binding KLH than CONV pigs. Their response to heat stress revealed a different strategy compared to CONV pigs. Taken together, AHS pigs appear to be more resilient and experience less chronic stress. Enhancing welfare by provision of social and environmental enrichment that better meets the behavioural needs of pigs seems to be a promising approach to improve their resilience.
Small networks of expressed genes in the whole blood and relationships to profiles in circulating metabolites provide insights in inter-individual variability of feed efficiency in growing pigs
Background Feed efficiency is a research priority to support a sustainable meat production. It is recognized as a complex trait that integrates multiple biological pathways orchestrated in and by various tissues. This study aims to determine networks between biological entities to explain inter-individual variation of feed efficiency in growing pigs. Results The feed conversion ratio (FCR), a measure of feed efficiency, and its two component traits, average daily gain and average daily feed intake, were obtained from 47 growing pigs from a divergent selection for residual feed intake and fed high-starch or high-fat high-fiber diets during 58 days. Datasets of transcriptomics (60 k porcine microarray) in the whole blood and metabolomics (1H-NMR analysis and target gas chromatography) in plasma were available for all pigs at the end of the trial. A weighted gene co-expression network was built from the transcriptomics dataset, resulting in 33 modules of co-expressed molecular probes. The eigengenes of eight of these modules were significantly ( P ≤ 0.05 ) or tended to be ( 0.05 < P ≤ 0.10 ) correlated to FCR. Great homogeneity in the enriched biological pathways was observed in these modules, suggesting co-expressed and co-regulated constitutive genes. They were mainly enriched in genes participating to immune and defense-related processes, and to a lesser extent, to translation, cell development or learning. They were also generally associated with growth rate and percentage of lean mass. In the whole network, only one module composed of genes participating to the response to substances, was significantly associated with daily feed intake and body adiposity. The plasma profiles in circulating metabolites and in fatty acids were summarized by weighted linear combinations using a dimensionality reduction method. Close association was thus found between a module composed of co-expressed genes participating to T cell receptor signaling and cell development process in the whole blood and related to FCR, and the circulating concentrations of polyunsaturated fatty acids in plasma. Conclusion These systemic approaches have highlighted networks of entities driving key biological processes involved in the phenotypic difference in feed efficiency between animals. Connecting transcriptomics and metabolic levels together had some additional benefits.
The genetics of resilience and its relationships with egg production traits and antibody traits in chickens
Background Resilience is the capacity of an animal to be minimally affected by disturbances or to rapidly return to its initial state before exposure to a disturbance. Resilient livestock are desired because of their improved health and increased economic profit. Genetic improvement of resilience may also lead to trade-offs with production traits. Recently, resilience indicators based on longitudinal data have been suggested, but they need further evaluation to determine whether they are indeed predictive of improved resilience, such as disease resilience. This study investigated different resilience indicators based on deviations between expected and observed egg production (EP) by exploring their genetic parameters, their possible trade-offs with production traits, and their relationships with antibody traits in chickens. Methods Egg production in a nucleus breeding herd environment based on 1-week-, 2-week-, or 3-week-intervals of two purebred chicken lines, a white egg-laying (33,825 chickens) and a brown egg-laying line (34,397 chickens), were used to determine deviations between observed EP and expected average batch EP, and between observed EP and expected individual EP. These deviations were used to calculate three types of resilience indicators for two life periods of each individual: natural logarithm-transformed variance (ln(variance)), skewness, and lag-one autocorrelation (autocorrelation) of deviations from 25 to 83 weeks of age and from 83 weeks of age to end of life. Then, we estimated their genetic correlations with EP traits and with two antibody traits. Results The most promising resilience indicators were those based on 1-week-intervals, as they had the highest heritability estimates (0.02–0.12) and high genetic correlations (above 0.60) with the same resilience indicators based on longer intervals. The three types of resilience indicators differed genetically from each other, which indicates that they possibly capture different aspects of resilience. Genetic correlations of the resilience indicator traits based on 1-week-intervals with EP traits were favorable or zero, which means that trade-off effects were marginal. The resilience indicator traits based on 1-week-intervals also showed no genetic correlations with the antibody traits, which suggests that they are not informative for improved immunity or vice versa in the nucleus environment. Conclusions This paper gives direction towards the evaluation and implementation of resilience indicators, i.e. to further investigate resilience indicator traits based on 1-week-intervals, in breeding programs for selecting genetically more resilient layer chickens.
Interactions between sire family and production environment (temperate vs. tropical) on performance and thermoregulation responses in growing pigs
The aim of this study was to evaluate the effect of 2 climatic environments (temperate [TEMP] vs. tropical humid [TROP]) on production and thermoregulation traits in growing pigs. A backcross design involving Large White (LW; heat sensitive) and Creole (CR; heat tolerant) pigs was studied. The same 10 F-1 LW x CR boars were mated with related LW sows in each environment. A total of 1,298 backcross pigs (n = 634 pigs from 11 batches for the TEMP environment and n = 664 pigs from 12 batches for the TROP environment) were phenotyped on BW (every 15 d from wk 11 to 23 of age), voluntary feed intake (ADFI, from wk 11 to 23), backfat thickness (BFT; at wk 19 and 23), skin temperature (ST; at wk 19 and 23), and rectal temperature (RT; at wk 19, 21, and 23). The feed conversion ratio was computed for the whole test period (11 to 23 wk). The calculation of the temperature-humidity index showed an average difference of 2.4 degrees C between the TEMP and TROP environments. The ADG and ADFI were higher in the TEMP environment than in the TROP environment (834 vs. 754 g/d and 2.20 vs. 1.80 kg/d, respectively; P < 0.001). Body temperatures were higher in the TROP environment than in the TEMP environment (35.9 vs. 34.8 degrees C for ST and 39.5 vs. 39.3 degrees C for RT, respectively; P < 0.001). Most of the studied traits (i.e., BW, BFT, ADG, ADFI, and RT) were affected by sire family x environment interactions (P < 0.05), resulting in \"robust\" and \"sensitive\" families. Our results show a family dependency in the relationships between heat resistance and robustness, suggesting the possibility of finding genotypes with high production and low heat sensitivity. Further research is needed to confirm the genetic x environment interaction and to detect QTL related to heat tolerance.
Modelling the effects of stocking rate, soil type, agroclimate location and nitrogen input on the grass DM yield and forage self-sufficiency of Irish grass-based dairy production systems
In pasture-based dairy production systems, identifying the appropriate stocking rate (SR; cows/ha) based on the farm grass growth is a key strategic decision for driving the overall farm business. This paper investigates a number of scenarios examining the effects of SR (2–3 cows/ha (0.25 unit changes)), annual nitrogen (N) fertilizer application rates (0–300 kg N/ha (50 kg/ha unit changes)), soil type (heavy and a free-draining soil) and agroclimate location ((south and northeast of Ireland) across 16 years) on pasture growth and forage self-sufficiency using the pasture-based herd dynamic milk model merged with the Moorepark St Gilles grass growth model. The modelled outputs were grass growth, grass dry matter intake, silage harvested and offered, overall farm forage self-sufficiency and N surplus. The model outputs calculated that annual grass yield increased from 9436 kg DM/ha/year when 0 kg N/ha/year was applied to 14 996 kg DM/ha/year when 300 kg N/ha/year were applied, with an average N response of 18.4 kg DM/kg N applied (range of 9.9–27.7 kg DM/kg N applied). Systems stocked at 2.5 cows/ha and applying 250–300 kg N fertilizer/ha/year were self-sufficient for forage. As N input was reduced from 250 kg N/ha/year, farm forage self-sufficiency declined, as did farm N surplus. The results showed that a reduction in N fertilizer application of 50 kg/ha/year will require a reduction in an SR of 0.18 cows/ha to maintain self-sufficiency (R2 = 0.90).
Can a urease inhibitor improve the efficacy of nitrogen use under perennial ryegrass temperate grazing conditions?
This study sought to compare the efficiency of different nitrogen (N) fertilizer forms applied to perennial ryegrass swards that were rotationally grazed by dairy cows or sheep under Irish conditions for two or three years. A 3 × 2 factorial random complete block design plot arrangement was used to compare calcium ammonium nitrate (CAN), urea and urea + N-(n-butyl) thiophosphoric triamide (urea + NBPT) at 150 and 250 kg N/ha per year. Zero nitrogen plots were also added to allow for N efficiency to be calculated. The study was conducted at four sites, giving three years of data collection at two sites and two years at the other two sites. All four sites observed similar responses to N fertilizer type and N fertilizer rate. Significant differences were observed between the 150 kg N/ha and 250 kg N/ha treatments for pre-grazing herbage yield (1346 and 1588 kg DM/ha, respectively; P < 0.001) and total herbage production (12 290 and 14 448 kg DM/ha, respectively; P < 0.001). There was no difference but a tendency for pre-grazing herbage yield to be higher for CAN and urea + NBPT than urea (1485, 1480 and 1436 kg DM/ha, for CAN, urea + NBPT and urea, respectively; P = 0.091). Total herbage production was significantly higher for CAN and urea + NBPT than urea (13 478, 13 542 and 13 087 kg DM/ha, respectively; P = 0.004). In conclusion, there was an overall benefit detected over the 10 site-years from using urea protected with NBPT v. using urea.
Porcine ear necrosis is associated with social behaviours in weaned piglets
Background Porcine ear necrosis (PEN) is a worldwide health issue and its aetiology is still unclear. The aim of this study was to describe the prevalence and the severity of PEN in a commercial farm, associated with pig behaviour and health biomarkers measures. On two consecutive batches, PEN prevalence was determined at the pen level. PEN scores, blood haptoglobin concentration and oxidative status were measured on two pigs per pen ( n  = 48 pens) 9, 30 and 50 days (D) after arrival to the post-weaning unit. Social nosing, oral manipulation and aggression of pen mates and exploration of enrichment materials were observed on two to three pigs per pen twice a week from D9 to D50. Results At the pen level, the higher the time spent nosing pen mates, the lower the percentage of pigs affected by PEN during both the early and the late post-weaning periods ( P  < 0.002) and, in the opposite, the higher the time spent orally manipulating pen mates during the late post-weaning period, the higher the percentage of affected pigs ( P  = 0.03). At the pig level, the higher the increase in hydroperoxides and haptoglobin during the early post-weaning period, the higher the PEN scores on D30 ( P  < 0.001). Conclusions This study suggests that a high incidence of social nosing, which can be an indicator of good social cohesion in a group, was significantly associated with less frequent lesions of PEN. In opposite, high incidence of oral manipulation of pen mates may increase the percentage of PEN-affected pigs. According to these observations, PEN is a multifactorial condition which may have social causes among others.