Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
269 result(s) for "Piao, Shilong"
Sort by:
Estimation of China’s terrestrial ecosystem carbon sink: Methods, progress and prospects
China announced its national goal to reach the peak of carbon emission by 2030 and achieve carbon neutrality by 2060, during the General Assembly of the United Nations in September 2020. In this context, the potential of the carbon sink in China’s terrestrial ecosystems to mitigate anthropogenic carbon emissions has attracted unprecedented attention from scientific communities, policy makers and the public. Here, we reviewed the assessments on China’s terrestrial ecosystem carbon sink, with focus on the principles, frameworks and methods of terrestrial ecosystem carbon sink estimates, as well as the recent progress and existing problems. Looking forward, we identified critical issues for improving the accuracy and precision of China’s terrestrial ecosystem carbon sink, in order to serve the more realistic policy making in pathways to achieve carbon neutrality for China.
Stabilization of atmospheric nitrogen deposition in China over the past decade
Increasing atmospheric nitrogen deposition can influence food production, environmental quality and climate change from the regional to global scales. As the largest developing country, China is expected to experience a rapid increase in N deposition. However, the lack of information on dry N deposition limits our understanding of the historical trend of the total N deposition, as well as the main drivers of this trend. Here, we use extensive datasets that include both wet and dry N deposition to evaluate the spatiotemporal variation of N deposition and the changes of its components in China during 1980–2015. Three significant transitions in N deposition in China were observed. First, the total N deposition began to stabilize in 2001–2005, mostly due to a decline in wet NH4+ deposition. Subsequently, a shift to approximately equal wet and dry N deposition occurred in 2011–2015, accompanied by increasing dry deposition. Finally, the contribution of reduced N components in the deposition decreased due to increasing NO3− deposition. These transitions were jointly driven by changes in the socioeconomic structure in China and vigorous controls in N pollution. The three observed important transitions challenge the traditional views about the continuous increase in N deposition in China.Nitrogen deposition in China has been almost constant over the past decade, as decreasing wet deposition has balanced increasing dry deposition, according to analyses of extensive datasets on wet and dry nitrogen depositions in China.
Reduced sediment transport in the Yellow River due to anthropogenic changes
The sediment load of China’s Yellow River has been declining. Analysis of 60 years of runoff and sediment load data attributes this decline to river engineering, with an increasing role of post-1990s land use changes on the Loess Plateau. The erosion, transport and redeposition of sediments shape the Earth’s surface, and affect the structure and function of ecosystems and society 1 , 2 . The Yellow River was once the world’s largest carrier of fluvial sediment, but its sediment load has decreased by approximately 90% over the past 60 years 3 . The decline in sediment load is due to changes in water discharge and sediment concentration, which are both influenced by regional climate change and human activities. Here we use an attribution approach to analyse 60 years of runoff and sediment load observations from the traverse of the Yellow River over China’s Loess Plateau — the source of nearly 90% of its sediment load. We find that landscape engineering, terracing and the construction of check dams and reservoirs were the primary factors driving reduction in sediment load from the 1970s to 1990s, but large-scale vegetation restoration projects have also reduced soil erosion from the 1990s onwards. We suggest that, as the ability of existing dams and reservoirs to trap sediments declines in the future, erosion rates on the Loess Plateau will increasingly control the Yellow River’s sediment load.
Perspectives on the role of terrestrial ecosystems in the ‘carbon neutrality’ strategy
The Chinese government has made a strategic decision to reach ‘carbon neutrality’ before 2060. China’s terrestrial ecosystem carbon sink is currently offsetting 7–15% of national anthropogenic emissions and has received widespread attention regarding its role in the ‘carbon neutrality’ strategy. We provide perspectives on this question by inferring from the fundamental principles of terrestrial ecosystem carbon cycles. We first elucidate the basic ecological theory that, over the long-term succession of ecosystem without regenerative disturbances, the carbon sink of a given ecosystem will inevitably approach zero as the ecosystem reaches its equilibrium state or climax. In this sense, we argue that the currently observed global terrestrial carbon sink largely emerges from the processes of carbon uptake and release of ecosystem responding to environmental changes and, as such, the carbon sink is never an intrinsic ecosystem function. We further elaborate on the long-term effects of atmospheric CO 2 changes and afforestation on China’s terrestrial carbon sink: the enhancement of the terrestrial carbon sink by the CO 2 fertilization effect will diminish as the growth of the atmospheric CO 2 slows down, or completely stops, depending on international efforts to combat climate change, and carbon sinks induced by ecological engineering, such as afforestation, will also decline as forest ecosystems become mature and reach their late-successional stage. We conclude that terrestrial ecosystems have nonetheless an important role to play to gain time for industrial emission reduction during the implementation of the ‘carbon neutrality’ strategy. In addition, science-based ecological engineering measures including afforestation and forest management could be used to elongate the time of ecosystem carbon sink service. We propose that the terrestrial carbon sink pathway should be optimized, by addressing the questions of ‘when’ and ‘where’ to plan afforestation projects, in order to effectively strengthen the terrestrial ecosystem carbon sink and maximize its contribution to the realization of the ‘carbon neutrality’ strategy.
Enhanced growth after extreme wetness compensates for post-drought carbon loss in dry forests
While many studies have reported that drought events have substantial negative legacy effects on forest growth, it remains unclear whether wetness events conversely have positive growth legacy effects. Here, we report pervasive and substantial growth enhancement after extreme wetness by examining tree radial growth at 1929 forest sites, satellite-derived vegetation greenness, and land surface model simulations. Enhanced growth after extreme wetness lasts for 1 to 5 years and compensates for 93 ± 8% of the growth deficit after extreme drought across global water-limited regions. Remarkable wetness-enhanced growths are observed in dry forests and gymnosperms, whereas the enhanced growths after extreme wetness are much smaller in wet forests and angiosperms. Limited or no enhanced growths are simulated by the land surface models after extreme wetness. These findings provide new evidence for improving climate-vegetation models to include the legacy effects of both drought and wet climate extremes. Increased extreme wet and dry years and forest growth loss from drought legacy effect lead to a question whether wetness events can conversely compensate for this loss. Here the authors report substantial growth enhancement after extreme wetness compensating for drought-induced growth loss globally.
Soil moisture–atmosphere coupling accelerates global warming
Soil moisture–atmosphere coupling (SA) amplifies greenhouse gas-driven global warming via changes in surface heat balance. The Scenario Model Intercomparison Project projects an acceleration in SA-driven warming due to the ‘warmer climate – drier soil’ feedback, which continuously warms the globe and thereby exerts an acceleration effect on global warming. The projection shows that SA-driven warming exceeds 0.5 °C over extratropical landmasses by the end of the 21st Century. The likelihood of extreme high temperatures will additionally increase by about 10% over the entire globe (excluding Antarctica) and more than 30% over large parts of North America and Europe under the high-emission scenario. This demonstrates the high sensitivity of SA to climate change, in which SA can exceed the natural range of climate variability and play a non-linear warming component role on the globe. Soil moisture–atmosphere coupling induces non-linear warming via the ‘warmer climate – drier soil’ feedback, which exerts an accelerating effect on global warming and on extremely high temperatures.
Seasonal biological carryover dominates northern vegetation growth
The state of ecosystems is influenced strongly by their past, and describing this carryover effect is important to accurately forecast their future behaviors. However, the strength and persistence of this carryover effect on ecosystem dynamics in comparison to that of simultaneous environmental drivers are still poorly understood. Here, we show that vegetation growth carryover (VGC), defined as the effect of present states of vegetation on subsequent growth, exerts strong positive impacts on seasonal vegetation growth over the Northern Hemisphere. In particular, this VGC of early growing-season vegetation growth is even stronger than past and co-occurring climate on determining peak-to-late season vegetation growth, and is the primary contributor to the recently observed annual greening trend. The effect of seasonal VGC persists into the subsequent year but not further. Current process-based ecosystem models greatly underestimate the VGC effect, and may therefore underestimate the CO 2 sequestration potential of northern vegetation under future warming. The future of terrestrial systems is influenced by their past, but this carryover effect is rarely quantified. Here, the authors provide the first quantitative evidence that a greener spring begets a greener summer and autumn, and that this carryover effect is even stronger than climate drivers.
Atmospheric dynamic constraints on Tibetan Plateau freshwater under Paris climate targets
Rivers originating in the Tibetan Plateau provide freshwater to downstream populations, yet runoff projections from warming are unclear due to precipitation uncertainties. Here, we use a historical atmospheric circulation–precipitation relationship to constrain future modelled wet-season precipitation over the Tibetan Plateau. Our constraint reduces precipitation increases to half of those from the unconstrained ensemble and reduces spread by around a factor of three. This constrained precipitation is used with estimated glacier melt contributions to constrain future runoff for seven rivers. We estimate runoff increases of 1.0–7.2% at the end of the twenty-first century for global mean warming of 1.5–4 °C above pre-industrial levels. Because population projections diverge across basins, this runoff increase will reduce the population fraction living under water scarcity conditions in the Yangtze and Yellow basins but not in the Indus and Ganges basins, necessitating improved water security through climate change adaptation policies in these regions at higher risk.Tibetan Plateau runoff projections are uncertain due to precipitation change uncertainty in climate models. Historical precipitation–circulation relationships constrain future wet-season precipitation and runoff change, suggesting worsening water scarcity for the Indus and Ganges river basins.
The carbon balance of terrestrial ecosystems in China
China's carbon balance The publication of a comprehensive assessment of China's terrestrial carbon budget fills a major gap in the geographical spread of carbon balance data, and helps to further reduce uncertainties in the Northern Hemisphere carbon balance. Three different indicators were used to monitor China's carbon balance and its driving mechanisms during the 1980s and 1990s: biomass and soil carbon inventories extrapolated from satellite greenness measurements, ecosystem models and atmospheric inversions. The three methods produce similar estimates for the net carbon sink at 0.19 to 0.26 petagrams per year. Global terrestrial ecosystems, in comparison, have absorbed carbon at a rate of 1 to 4 Pg carbon per year during the 1980s and 1990s, which offsets 10–60% of fossil fuel emissions. Northeast China is a net source of CO 2 to the atmosphere as a result over-harvesting and degradation of forests. In contrast, southern China accounts for over 65% of the carbon sink, attributable to regional climate change, tree planting and shrub recovery. This paper analyses the terrestrial carbon balance of China during the 1980s and 1990s using biomass and soil carbon inventories extrapolated by satellite greenness measurements, ecosystem models and atmospheric inversions. These three methods produce similar estimates of a net sink of 0.19–0.26 billion tonnes of carbon per year, indicating that China absorbed 28–37 per cent of its fossil carbon emissions over these two decades, mainly attributable to regional climate change, large-scale plantation programmes and shrub recovery. Global terrestrial ecosystems absorbed carbon at a rate of 1–4 Pg yr -1 during the 1980s and 1990s, offsetting 10–60 per cent of the fossil-fuel emissions 1 , 2 . The regional patterns and causes of terrestrial carbon sources and sinks, however, remain uncertain 1 , 2 , 3 . With increasing scientific and political interest in regional aspects of the global carbon cycle, there is a strong impetus to better understand the carbon balance of China 1 , 2 , 3 . This is not only because China is the world’s most populous country and the largest emitter of fossil-fuel CO 2 into the atmosphere 4 , but also because it has experienced regionally distinct land-use histories and climate trends 1 , which together control the carbon budget of its ecosystems. Here we analyse the current terrestrial carbon balance of China and its driving mechanisms during the 1980s and 1990s using three different methods: biomass and soil carbon inventories extrapolated by satellite greenness measurements, ecosystem models and atmospheric inversions. The three methods produce similar estimates of a net carbon sink in the range of 0.19–0.26 Pg carbon (PgC) per year, which is smaller than that in the conterminous United States 5 but comparable to that in geographic Europe 6 . We find that northeast China is a net source of CO 2 to the atmosphere owing to overharvesting and degradation of forests. By contrast, southern China accounts for more than 65 per cent of the carbon sink, which can be attributed to regional climate change, large-scale plantation programmes active since the 1980s and shrub recovery. Shrub recovery is identified as the most uncertain factor contributing to the carbon sink. Our data and model results together indicate that China’s terrestrial ecosystems absorbed 28–37 per cent of its cumulated fossil carbon emissions during the 1980s and 1990s.
Global irrigation contribution to wheat and maize yield
Irrigation is the largest sector of human water use and an important option for increasing crop production and reducing drought impacts. However, the potential for irrigation to contribute to global crop yields remains uncertain. Here, we quantify this contribution for wheat and maize at global scale by developing a Bayesian framework integrating empirical estimates and gridded global crop models on new maps of the relative difference between attainable rainfed and irrigated yield (ΔY). At global scale, ΔY is 34 ± 9% for wheat and 22 ± 13% for maize, with large spatial differences driven more by patterns of precipitation than that of evaporative demand. Comparing irrigation demands with renewable water supply, we find 30–47% of contemporary rainfed agriculture of wheat and maize cannot achieve yield gap closure utilizing current river discharge, unless more water diversion projects are set in place, putting into question the potential of irrigation to mitigate climate change impacts.