Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
28
result(s) for
"Picaud, Sarah"
Sort by:
RVX-208, an inhibitor of BET transcriptional regulators with selectivity for the second bromodomain
by
Knapp, Stefan
,
Felletar, Ildiko
,
Philpott, Martin
in
Betting
,
Biological Sciences
,
Cell lines
2013
Bromodomains have emerged as attractive candidates for the development of inhibitors targeting gene transcription. Inhibitors of the bromo and extraterminal (BET) family recently showed promising activity in diverse disease models. However, the pleiotropic nature of BET proteins regulating tissue-specific transcription has raised safety concerns and suggested that attempts should be made for domain-specific targeting. Here, we report that RVX-208, a compound currently in phase II clinical trials, is a BET bromodomain inhibitor specific for second bromodomains (BD2s). Cocrystal structures revealed binding modes of RVX-208 and its synthetic precursor, and fluorescent recovery after photobleaching demonstrated that RVX-208 displaces BET proteins from chromatin. However, gene-expression data showed that BD2 inhibition only modestly affects BET-dependent gene transcription. Our data demonstrate the feasibility of specific targeting within the BET family resulting in different transcriptional outcomes and highlight the importance of BD1 in transcriptional regulation.
Journal Article
A TFEB nuclear export signal integrates amino acid supply and glucose availability
2018
How cells coordinate the response to fluctuating carbon and nitrogen availability required to maintain effective homeostasis is a key issue. Amino acid limitation that inactivates mTORC1 promotes de-phosphorylation and nuclear translocation of Transcription Factor EB (TFEB), a key transcriptional regulator of lysosome biogenesis and autophagy that is deregulated in cancer and neurodegeneration. Beyond its cytoplasmic sequestration, how TFEB phosphorylation regulates its nuclear-cytoplasmic shuttling, and whether TFEB can coordinate amino acid supply with glucose availability is poorly understood. Here we show that TFEB phosphorylation on S142 primes for GSK3β phosphorylation on S138, and that phosphorylation of both sites but not either alone activates a previously unrecognized nuclear export signal (NES). Importantly, GSK3β is inactivated by AKT in response to mTORC2 signaling triggered by glucose limitation. Remarkably therefore, the TFEB NES integrates carbon (glucose) and nitrogen (amino acid) availability by controlling TFEB flux through a nuclear import-export cycle.
On amino acid deprivation TFEB translocates from the cytoplasm to the nucleus. Here the authors identify a nuclear export signal in TFEB that requires dual phosphorylation at the S142 ERK/mTORC1 and S138 GSK3β sites, and further show glucose limitation drives nuclear accumulation of TFEB and inhibits GSK3β via an mTORC2-AKT dependent mechanism.
Journal Article
Dual kinase-bromodomain inhibitors for rationally designed polypharmacology
2014
Kinases are a widely targeted enzyme class in cancer chemotherapy. Several clinically used kinase inhibitors also inhibit bromodomains, epigenetic ‘readers’ of acetylated lysine residues, suggesting that kinase-bromodomain polypharmacology may offer benefits in therapeutic settings.
Concomitant inhibition of multiple cancer-driving kinases is an established strategy to improve the durability of clinical responses to targeted therapies. The difficulty of discovering kinase inhibitors with an appropriate multitarget profile has, however, necessitated the application of combination therapies, which can pose major clinical development challenges. Epigenetic reader domains of the bromodomain family have recently emerged as new targets for cancer therapy. Here we report that several clinical kinase inhibitors also inhibit bromodomains with therapeutically relevant potencies and are best classified as dual kinase-bromodomain inhibitors. Nanomolar activity on BRD4 by BI-2536 and TG-101348, which are clinical PLK1 and JAK2-FLT3 kinase inhibitors, respectively, is particularly noteworthy as these combinations of activities on independent oncogenic pathways exemplify a new strategy for rational single-agent polypharmacological targeting. Furthermore, structure-activity relationships and co-crystal structures identify design features that enable a general platform for the rational design of dual kinase-bromodomain inhibitors.
Journal Article
Acetylation reprograms MITF target selectivity and residence time
2023
The ability of transcription factors to discriminate between different classes of binding sites associated with specific biological functions underpins effective gene regulation in development and homeostasis. How this is achieved is poorly understood. The microphthalmia-associated transcription factor MITF is a lineage-survival oncogene that plays a crucial role in melanocyte development and melanoma. MITF suppresses invasion, reprograms metabolism and promotes both proliferation and differentiation. How MITF distinguishes between differentiation and proliferation-associated targets is unknown. Here we show that compared to many transcription factors MITF exhibits a very long residence time which is reduced by p300/CBP-mediated MITF acetylation at K206. While K206 acetylation also decreases genome-wide MITF DNA-binding affinity, it preferentially directs DNA binding away from differentiation-associated CATGTG motifs toward CACGTG elements. The results reveal an acetylation-mediated switch that suppresses differentiation and provides a mechanistic explanation of why a human K206Q MITF mutation is associated with Waardenburg syndrome.
The microphthalmia-associated transcription factor MITF is a lineage-survival oncogene that plays a crucial role in melanocyte development and melanoma. Here, the authors reveal that MITF has a very long chromatin-bound half-life, and that MITF target selectivity is regulated by K206 acetylation, a residue linked to Waardenburg syndrome.
Journal Article
Development and preclinical validation of a novel covalent ubiquitin receptor Rpn13 degrader in multiple myeloma
2019
Proteasome inhibition is an effective treatment for multiple myeloma (MM); however, targeting different components of the ubiquitin–proteasome system (UPS) remains elusive. Our RNA-interference studies identified proteasome-associated ubiquitin-receptor Rpn13 as a mediator of MM cell growth and survival. Here, we developed the first degrader of Rpn13, WL40, using a small-molecule-induced targeted protein degradation strategy to selectively degrade this component of the UPS. WL40 was synthesized by linking the Rpn13 covalent inhibitor RA190 with the cereblon (CRBN) binding ligand thalidomide. We show that WL40 binds to both Rpn13 and CRBN and triggers degradation of cellular Rpn13, and is therefore first-in-class in exploiting a covalent inhibitor for the development of degraders. Biochemical and cellular studies show that WL40-induced Rpn13 degradation is both CRBN E3 ligase- and Rpn13-dependent. Importantly, WL40 decreases viability in MM cell lines and patient MM cells, even those resistant to bortezomib. Mechanistically, WL40 interrupts Rpn13 function and activates caspase apoptotic cascade, ER stress response and p53/p21 signaling. In animal model studies, WL40 inhibits xenografted human MM cell growth and prolongs survival. Overall, our data show the development of the first UbR Rpn13 degrader with potent anti-MM activity, and provide proof of principle for the development of degraders targeting components of the UPS for therapeutic application.
Journal Article
The structure of nontypeable Haemophilus influenzae SapA in a closed conformation reveals a constricted ligand-binding cavity and a novel RNA binding motif
by
Walsh, Martin A.
,
Bird, Louise E.
,
Picaud, Sarah
in
ABC transporter
,
ABC transporters
,
Analysis
2021
Nontypeable Haemophilus influenzae (NT Hi ) is a significant pathogen in respiratory disease and otitis media. Important for NT Hi survival, colonization and persistence in vivo is the Sap ( s ensitivity to a ntimicrobial p eptides) ABC transporter system. Current models propose a direct role for Sap in heme and antimicrobial peptide (AMP) transport. Here, the crystal structure of SapA, the periplasmic component of Sap, in a closed, ligand bound conformation, is presented. Phylogenetic and cavity volume analysis predicts that the small, hydrophobic SapA central ligand binding cavity is most likely occupied by a hydrophobic di- or tri- peptide. The cavity is of insufficient volume to accommodate heme or folded AMPs. Crystal structures of SapA have identified surface interactions with heme and dsRNA. Heme binds SapA weakly (K d 282 μM) through a surface exposed histidine, while the dsRNA is coordinated via residues which constitute part of a conserved motif (estimated K d 4.4 μM). The RNA affinity falls within the range observed for characterized RNA/protein complexes. Overall, we describe in molecular-detail the interactions of SapA with heme and dsRNA and propose a role for SapA in the transport of di- or tri-peptides.
Journal Article
SPOTing Acetyl-Lysine Dependent Interactions
2015
Post translational modifications have been recognized as chemical signals that create docking sites for evolutionary conserved effector modules, allowing for signal integration within large networks of interactions. Lysine acetylation in particular has attracted attention as a regulatory modification, affecting chromatin structure and linking to transcriptional activation. Advances in peptide array technologies have facilitated the study of acetyl-lysine-containing linear motifs interacting with the evolutionary conserved bromodomain module, which specifically recognizes and binds to acetylated sequences in histones and other proteins. Here we summarize recent work employing SPOT peptide technology to identify acetyl-lysine dependent interactions and document the protocols adapted in our lab, as well as our efforts to characterize such bromodomain-histone interactions. Our results highlight the versatility of SPOT methods and establish an affordable tool for rapid access to potential protein/modified-peptide interactions involving lysine acetylation.
Journal Article
Cloning and expression of a hexose transporter gene expressed during the ripening of grape berry
by
Fillion, L
,
Romieu, C
,
Picaud, S
in
abscisic acid
,
active transport
,
Agronomy. Soil science and plant productions
1999
The ripening of grape (Vitis vinifera L.) is characterized by massive sugar import into the berries. The events triggering this process and the pathways of assimilate transport are still poorly known. A genomic clone Vvht1 (Vitis vinifera hexose transporter1) and the corresponding cDNA encoding a hexose transporter whose expression is induced during berry ripening have been isolated. Vvht1 is expressed mainly in the berries, with a first peak of expression at anthesis, and a second peak about 5 weeks after veraison (a viniculture term for the inception of ripening). Vvht is strictly conserved between two grape cultivars (Pinot Noir and Ugni-Blanc). The organization of the Vvht1 genomic sequence is homologous to that of the Arabidopsis hexose transporter, but differs strongly from that of the Chlorella kessleri hexose transporter genes. The Vvht1 promoter sequence contains several potential regulating cis elements, including ethylene-, abscisic acid-, and sugar-responsive boxes. Comparison of the Vvht1 promoter with the promoter of grape alcohol dehydrogenase, which is expressed at the same time during ripening, also allowed the identification of a 15-bp consensus sequence, which suggests a possible co-regulation of the expression of these genes. The expression of Vvht1 during ripening indicates that sucrose is at least partially cleaved before uptake into the flesh cells.
Journal Article
Selective inhibition of BET bromodomains
by
Morse, Elizabeth M.
,
Smith, William B.
,
Shen, Yao
in
631/154/309/2144
,
631/45/535
,
631/67/1813/1352
2010
Epigenetic proteins are intently pursued targets in ligand discovery. So far, successful efforts have been limited to chromatin modifying enzymes, or so-called epigenetic ‘writers’ and ‘erasers’. Potent inhibitors of histone binding modules have not yet been described. Here we report a cell-permeable small molecule (JQ1) that binds competitively to acetyl-lysine recognition motifs, or bromodomains. High potency and specificity towards a subset of human bromodomains is explained by co-crystal structures with bromodomain and extra-terminal (BET) family member BRD4, revealing excellent shape complementarity with the acetyl-lysine binding cavity. Recurrent translocation of BRD4 is observed in a genetically-defined, incurable subtype of human squamous carcinoma. Competitive binding by JQ1 displaces the BRD4 fusion oncoprotein from chromatin, prompting squamous differentiation and specific antiproliferative effects in BRD4-dependent cell lines and patient-derived xenograft models. These data establish proof-of-concept for targeting protein–protein interactions of epigenetic ‘readers’, and provide a versatile chemical scaffold for the development of chemical probes more broadly throughout the bromodomain family.
Histone mimics target BET bromodomains
Small molecules that perturb chromatin proteins are an emerging focus of current biomedical research. Two groups reporting in this issue have targeted bromodomain-containing BET proteins that bind acetylated lysine residues during gene activation, arriving at cell-permeable small molecule compounds with similar structures based on fused triazole-diazepine rings. James Bradner and colleagues report the development of a compound named JQ1. The BET protein BRD4, with two bromodomains, is implicated in human squamous cell carcinoma. JQ1 inhibits the growth of BRD4-dependent tumours in mouse models. Alexander Tarakhovsky and colleagues' inhibitor, I-BET, is shown to interfere with the binding of certain BET family members to acetylated histones. It inhibits activation of pro-inflammatory genes in macrophages and has immunomodulatory activity in a mouse model of inflammatory disease.
A new approach is used to target BET family bromodomains which are found in transcriptional regulators where they mediate the recognition of acetyl-lysine chromatin marks. Structural data reveal how the compound JQ1 binds to the bromodomain of BRD4. BRD4 has been implicated in a subtype of human squamous carcinomas, and JQ1 is found to inhibit the growth of BRD4 dependent tumours in mouse models.
Journal Article
BRAF/MAPK and GSK3 signaling converges to control MITF nuclear export
by
Knapp, Stefan
,
Lisle, Richard
,
Friedrichsen, Hans J.
in
1-Phosphatidylinositol 3-kinase
,
Active Transport, Cell Nucleus
,
Animals
2018
The close integration of the MAPK, PI3K, and WNT signaling pathways underpins much of development and is deregulated in cancer. In principle, combinatorial posttranslational modification of key lineage-specific transcription factors would be an effective means to integrate critical signaling events. Understanding how this might be achieved is central to deciphering the impact of microenvironmental cues in development and disease. The microphthalmia-associated transcription factor MITF plays a crucial role in the development of melanocytes, the retinal pigment epithelium, osteoclasts, and mast cells and acts as a lineage survival oncogene in melanoma. MITF coordinates survival, differentiation, cell-cycle progression, cell migration, metabolism, and lysosome biogenesis. However, how the activity of this key transcription factor is controlled remains poorly understood. Here, we show that GSK3, downstream from both the PI3K and Wnt pathways, and BRAF/MAPK signaling converges to control MITF nuclear export. Phosphorylation of the melanocyte MITF-M isoform in response to BRAF/MAPK signaling primes for phosphorylation by GSK3, a kinase inhibited by both PI3K and Wnt signaling. Dual phosphorylation, but not monophosphorylation, then promotes MITF nuclear export by activating a previously unrecognized hydrophobic export signal. Nonmelanocyte MITF isoforms exhibit poor regulation by MAPK signaling, but instead their export is controlled by mTOR. We uncover here an unanticipated mode of MITF regulation that integrates the output of key developmental and cancer-associated signaling pathways to gate MITF flux through the import–export cycle. The results have significant implications for our understanding of melanoma progression and stem cell renewal.
Journal Article