Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
37
result(s) for
"Picozza, Piergiorgio"
Sort by:
Performances of Kevlar and Polyethylene as radiation shielding on-board the International Space Station in high latitude radiation environment
2017
Passive radiation shielding is a mandatory element in the design of an integrated solution to mitigate the effects of radiation during long deep space voyages for human exploration. Understanding and exploiting the characteristics of materials suitable for radiation shielding in space flights is, therefore, of primary importance. We present here the results of the first space-test on Kevlar and Polyethylene radiation shielding capabilities including direct measurements of the background baseline (no shield). Measurements are performed on-board of the International Space Station (Columbus modulus) during the ALTEA-shield ESA sponsored program. For the first time the shielding capability of such materials has been tested in a radiation environment similar to the deep-space one, thanks to the feature of the ALTEA system, which allows to select only high latitude orbital tracts of the International Space Station. Polyethylene is widely used for radiation shielding in space and therefore it is an excellent benchmark material to be used in comparative investigations. In this work we show that Kevlar has radiation shielding performances comparable to the Polyethylene ones, reaching a dose rate reduction of 32 ± 2% and a dose equivalent rate reduction of 55 ± 4% (for a shield of 10 g/cm
2
).
Journal Article
Search for Strange Quark Matter and Nuclearites on Board the International Space Station (SQM-ISS): A Future Detector to Search for Massive, Non-Relativistic Objects in Space
by
Ricci, Marco
,
Bisconti, Francesca
,
Lattanzi, Massimiliano
in
Black holes
,
Candidates
,
Cosmic rays
2024
SQM-ISS is a detector that will search from the International Space Station for massive particles possibly present among the cosmic rays. Among them, we mention strange quark matter, Q-Balls, lumps of fermionic exotic compact stars, Primordial Black Holes, mirror matter, Fermi balls, etc. These compact, dense objects would be much heavier than normal nuclei, have velocities of galaxy-bound systems, and would be deeply penetrating. The detector is based on a stack of scintillator and piezoelectric elements which can provide information on both the charge state and mass, with the additional timing information allowing to determine the speed of the particle, searching for particles with velocities of the order of galactic rotation speed (v ≲ 250 km/s). In this work, we describe the apparatus and its observational capabilities.
Journal Article
Haiti Earthquake (Mw 7.2): Magnetospheric–Ionospheric–Lithospheric Coupling during and after the Main Shock on 14 August 2021
by
Battiston, Roberto
,
D’Angelo, Giulia
,
Bertello, Igor
in
analytical model
,
Anomalies
,
Atmosphere
2022
In the last few decades, the efforts of the scientific community to search earthquake signatures in the atmospheric, ionospheric and magnetospheric media have grown rapidly. The increasing amount of good quality data from both ground stations and satellites has allowed for the detections of anomalies with high statistical significance such as ionospheric plasma density perturbations and/or atmospheric temperature and pressure changes. However, the identification of a causal link between the observed anomalies and their possible seismic trigger has so far been prevented by difficulties in the identification of confounders (such as solar and atmospheric activity) and the lack of a global analytical lithospheric–atmospheric–magnetospheric model able to explain (and possibly forecast) any anomalous signal. In order to overcome these problems, we have performed a multi-instrument analysis of a low-latitude seismic event by using high-quality data from both ground bases and satellites and preserving their statistical significance. An earthquake (Mw = 7.2) occurred in the Caribbean region on 14 August 2021 under both solar quiet and fair weather conditions, thus proving an optimal case study to reconstruct the link between the lithosphere, atmosphere, ionosphere, and magnetosphere. The good match between the observations and novel magnetospheric–ionospheric–lithospheric coupling (M.I.L.C.) modeling of the event confirmed that the fault break generated an atmospheric gravity wave that was able to mechanically perturb the ionospheric plasma density, in turn triggering a variation in the magnetospheric field line resonance frequency.
Journal Article
The First Ground‐Level Enhancement of Solar Cycle 25 as Seen by the High‐Energy Particle Detector (HEPD‐01) on Board the CSES‐01 Satellite
by
Follega, Francesco Maria
,
Battiston, Roberto
,
Consolini, Giuseppe
in
Corona
,
Coronal mass ejection
,
Earth
2023
In this work we present the High‐Energy Particle Detector (HEPD‐01) observations of proton fluxes from space during the 28 October 2021 solar energetic particle event, which produced a ground‐level enhancement on Earth. The event was associated with the major, long‐duration X1‐class flare and the concomitant coronal mass ejection (CME) that erupted from the Active Region 12887. This is the first direct measurement from space of solar particles emitted during the current solar cycle, recorded by a single instrument in the energy range from ∼50 MeV/n up to ∼250 MeV/n. We have performed a Weibull‐modeled spectral analysis of the energy spectrum in the wide energy range 300 keV–250 MeV, obtained from combination of HEPD‐01 proton measurements with the ones from ACE/ULEIS, SOHO/EPHIN, and SOHO/ERNE. The good agreement between data and model, also corroborated by a comparison with other spectral shapes commonly used in these studies, suggests that particles could have possibly been accelerated out from the ambient corona through the contribution of stochastic acceleration at the CME‐driven shock, even if the presence of seed populations influencing spectral shape could not be excluded. Finally, a Solar Proton Release time of 16:01 UTC ± 13 min and a magnetic path‐length of L = 1.32 ± 0.24 AU have been obtained, in agreement with previous results for this event. We remark that new and precise data on protons in the tens/hundreds MeV energy range—like the one provided by HEPD‐01—could shed more light on particle acceleration as well as provide a reliable parametrization of solar energetic particle spectra for Space Weather purposes.
Journal Article
The Scintillation Counters of the High-Energy Particle Detector of the China Seismo-Electromagnetic (CSES-02) Satellite
by
Follega, Francesco Maria
,
Battiston, Roberto
,
Cristoforetti, Marco
in
Atoms & subatomic particles
,
Cosmic rays
,
Crystals
2024
The High-Energy Particle Detector (HEPD-02) is one of the scientific payloads of the China Seismo-Electromagnetic Satellite (CSES-02). The HEPD-02’s main purpose is to characterize the particle environment in the Earth’s vicinity, identifying sudden changes in the fluxes and correlating them with solar and terrestrial phenomena. Additionally, HEPD-02 also has capabilities in detecting Gamma-Ray Bursts. At the core of HEPD-02, a tower of scintillation counters made of plastic and LYSO crystals is able to recognize electrons in the range between 3 and 100 MeV, protons and nuclei between 30 and 200 MeV/n. Plastic scintillators covering the calorimeter on five sides allow to reject particles entering from the top and not completely absorbed within its volume. In this work, the design of the HEPD-02 is reviewed in comparison to its predecessor, HEPD-01, highlighting the innovations of the new design. The design of each scintillation counter type has been fully validated through a campaign of prototype realization, testing, and characterization. The production of the scintillation counters, including the PMT selection process, is also discussed. Finally, the performance of the counters is compared with simulations, showing an agreement of within 20% with the expected performance, thereby meeting expectations.
Journal Article
Status of the K-EUSO Orbital Detector of Ultra-High Energy Cosmic Rays
2022
K-EUSO (KLYPVE-EUSO) is a planned orbital mission aimed at studying ultra-high energy cosmic rays (UHECRs) by detecting fluorescence and Cherenkov light emitted by extensive air showers in the nocturnal atmosphere of Earth in the ultraviolet (UV) range. The observatory is being developed within the JEM-EUSO collaboration and is planned to be deployed on the International Space Station after 2025 and operated for at least two years. The telescope, consisting of ∼105 independent pixels, will allow a spatial resolution of ∼0.6 km on the ground, and, from a 400 km altitude, it will achieve a large and full sky exposure to sample the highest energy range of the UHECR spectrum. We provide a comprehensive review of the current status of the development of the K-EUSO experiment, paying special attention to its hardware parts and expected performance. We demonstrate how results of the K-EUSO mission can complement the achievements of the existing ground-based experiments and push forward the intriguing studies of ultra-high energy cosmic rays, as well as bring new knowledge about other phenomena manifesting themselves in the atmosphere in the UV range.
Journal Article
The Electric Field Detector on Board the China Seismo Electromagnetic Satellite—In-Orbit Results and Validation
by
Lei, Jungang
,
Candidi, Maurizio
,
Rebustini, Gianmaria
in
electric field instrument
,
low earth orbiting satellite
,
plasma physics
2021
The aim of this work is to validate the China Seismo-Electromagnetic Satellite 01 (CSES-01) Electric Field Detector (EFD) measurements through the analysis of the instrument response to various inputs: (a) geomagnetic field variations, (b) plasma density depletions, and (c) electromagnetic signals from natural and artificial sources such as Schumann resonance and VLF (Very Low Frequency) antennas. The knowledge of the geomagnetic induced electric field vs×B (where vs is the satellite speed and B and the local magnetic field), and the plasma variations effect, described by the Orbit Motion Limited (OML) theory, are key parameters to determine the expected theoretical values of the EFD sensors potentials data. Based on the CSES on-board measurements of plasma parameters and geomagnetic field, a direct quantitative validation is presented. In addition, the electromagnetic signals detection capability is checked but only qualitatively confirmed, since the ionospheric complexity does not allow an accurate theoretical computation of waves modulation. The quantitative comparison highlights the very good agreement between observed and theoretical potentials values during average condition. Conversely, in case of strong electric fields, the OML theory shows partial inability in reproducing the actual space plasma conditions resulting in a reduced theoretical values reliability. Finally, both natural and artificial electromagnetic signals are satisfactorily identified showing a reliable sensitivity in different frequency bands.
Journal Article
The August 2018 Geomagnetic Storm Observed by the High-Energy Particle Detector on Board the CSES-01 Satellite
by
Follega, Francesco Maria
,
Battiston, Roberto
,
Oliva, Alberto
in
Charged particles
,
Cosmic rays
,
Earthquakes
2021
On 25 August 2018, a G3-class geomagnetic storm reached the Earth’s magnetosphere, causing a transient rearrangement of the charged particle environment around the planet, which was detected by the High-Energy Particle Detector (HEPD) on board the China Seismo-Electromagnetic Satellite (CSES-01). We found that the count rates of electrons in the MeV range were characterized by a depletion during the storm’s main phase and a clear enhancement during the recovery caused by large substorm activity, with the key role played by auroral processes mapped into the outer belt. A post-storm rate increase was localized at L-shells immediately above ∼3 and mostly driven by non-adiabatic local acceleration caused by possible resonant interaction with low-frequency magnetospheric waves.
Journal Article
The JEM-EUSO Program for UHECR Studies from Space
by
Picozza, P
,
Sagawa, H
,
Olinto, A
in
[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
,
beam, width
,
cosmic radiation, UHE
2023
To take up the challenge of understanding the origin of the ultra-high-energy cosmic rays (UHECRs), new observational means appear necessary. The JEM-EUSO Collaboration has undertaken to open the space road to UHECR studies. For more than a decade, it has been developing a realistic program to measure the UHECRs from space with unprecedented aperture, together with complementary scientific objectives in a broader multidisciplinary context. Several intermediate missions have already been completed (on the ground: EUSO-TA; under stratospheric ballons: EUSO-Balloon and EUSO-SPB1; in space: TUS, and on-board the ISS: MINI-EUSO), and others are in preparation for flight (EUSO-SPB2), under review (K-EUSO: currently on hold), or proposed for the next decade (POEMMA). We report on the general status of the JEM-EUSO program, underlining that its technology has now reached operational maturity, and is ready for actual cosmic-ray shower detection from above.
Journal Article
Neural Network Based Approach to Recognition of Meteor Tracks in the Mini-EUSO Telescope Data
by
Capel, Francesca
,
Olinto, Angela
,
Zotov, Mikhail
in
Artificial neural networks
,
atmosphere
,
Collaboration
2023
Mini-EUSO is a wide-angle fluorescence telescope that registers ultraviolet (UV) radiation in the nocturnal atmosphere of Earth from the International Space Station. Meteors are among multiple phenomena that manifest themselves not only in the visible range but also in the UV. We present two simple artificial neural networks that allow for recognizing meteor signals in the Mini-EUSO data with high accuracy in terms of a binary classification problem. We expect that similar architectures can be effectively used for signal recognition in other fluorescence telescopes, regardless of the nature of the signal. Due to their simplicity, the networks can be implemented in onboard electronics of future orbital or balloon experiments.
Journal Article