Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
143 result(s) for "Piehl, Fredrik"
Sort by:
Inflammation-related plasma and CSF biomarkers for multiple sclerosis
Effective biomarkers for multiple sclerosis diagnosis, assessment of prognosis, and treatment responses, in particular those measurable in blood, are largely lacking. We have investigated a broad set of protein biomarkers in cerebrospinal fluid (CSF) and plasma using a highly sensitive proteomic immunoassay. Cases from two independent cohorts were compared with healthy controls and patients with other neurological diseases. We identified and replicated 10 cerebrospinal fluid proteins including IL-12B, CD5, MIP-1a, and CXCL9 which had a combined diagnostic efficacy similar to immunoglobulin G (IgG) index and neurofilament light chain (area under the curve [AUC] = 0.95). Two plasma proteins, OSM and HGF, were also associated with multiple sclerosis in comparison to healthy controls. Sensitivity and specificity of combined CSF and plasma markers for multiple sclerosis were 85.7% and 73.5%, respectively. In the discovery cohort, eotaxin-1 (CCL11) was associated with disease duration particularly in patients who had secondary progressive disease (P CSF < 4 × 10−5, P plasma < 4 × 10−5), and plasma CCL20 was associated with disease severity (P = 4 × 10−5), although both require further validation. Treatment with natalizumab and fingolimod showed different compartmental changes in protein levels of CSF and peripheral blood, respectively, including many disease-associated markers (e.g., IL12B, CD5) showing potential application for both diagnosing disease and monitoring treatment efficacy. We report a number of multiple sclerosis biomarkers in CSF and plasma for early disease detection and potential indicators for disease activity. Of particular importance is the set of markers discovered in blood, where validated biomarkers are lacking.
A Serum Protein Biomarker Panel Improves Outcome Prediction in Human Traumatic Brain Injury
Brain-enriched protein biomarkers of tissue fate are being introduced clinically to aid in traumatic brain injury (TBI) management. The aim of this study was to determine how concentrations of six different protein biomarkers, measured in samples collected during the first weeks after TBI, relate to injury severity and outcome. We included neurocritical care TBI patients that were prospectively enrolled from 2007 to 2013, all having one to three blood samples drawn during the first 2 weeks. The biomarkers analyzed were S100 calcium-binding protein B (S100B), neuron-specific enolase (NSE), glial fibrillary acidic protein (GFAP), ubiquitin carboxy-terminal hydrolase-L1 (UCH-L1), tau, and neurofilament-light (NF-L). Glasgow Outcome Score (GOS) was assessed at 12 months. In total, 172 patients were included. All serum markers were associated with injury severity as classified on computed tomography scans at admission. Almost all biomarkers outperformed other known outcome predictors with higher levels the first 5 days, correlating with unfavorable outcomes, and UCH-L1 (0.260, pseduo-R 2) displaying the best discrimination in univariate analyses. After adjusting for acknowledged TBI outcome predictors, GFAP and NF-L added most independent information to predict favorable/unfavorable GOS, improving the model from 0.38 to 0.51 pseudo-R 2. A correlation matrix indicated substantial covariance, with the strongest correlation between UCH-L1, GFAP, and tau (r = 0.827–0.880). Additionally, the principal component analysis exhibited clustering of UCH-L1 and tau, as well as GFAP, S100B, and NSE, which was separate from NF-L. In summary, a panel of several different protein biomarkers, all associated with injury severity, with different cellular origin and temporal trajectories, improve outcome prediction models.
Timing of high-efficacy therapy for multiple sclerosis: a retrospective observational cohort study
High-efficacy therapies in multiple sclerosis are traditionally used after unsuccessful treatment with first-line disease modifying therapies. We hypothesised that early commencement of high-efficacy therapy would be associated with reduced long-term disability. We therefore aimed to compare long-term disability outcomes between patients who started high-efficacy therapies within 2 years of disease onset with those who started 4–6 years after disease onset. In this retrospective international observational study, we obtained data from the MSBase registry and the Swedish MS registry, which prospectively collect patient data that are specific to multiple sclerosis as part of routine clinical care. We identified adult patients (aged ≥18 years) with relapsing-remitting multiple sclerosis, with at least 6 years of follow-up since disease onset, and who started the high-efficacy therapy (rituximab, ocrelizumab, mitoxantrone, alemtuzumab, or natalizumab) either 0–2 years (early) or 4–6 years (late) after clinical disease onset. We matched patients in the early and late groups using propensity scores calculated on the basis of their baseline clinical and demographic data. The primary outcome was disability, measured with the Expanded Disability Status Score (EDSS; an ordinal scale of 0–10, with higher scores indicating increased disability), at 6–10 years after disease onset, assessed with a linear mixed-effects model. We identified 6149 patients in the MSBase registry who had been given high-efficacy therapy, with data collected between Jan 1, 1975, and April 13, 2017, and 2626 patients in the Swedish MS Registry, with data collected between Dec 10, 1997, and Sept 16, 2019. Of whom, 308 in the MSBase registry and 236 in the Swedish MS registry were eligible for inclusion. 277 (51%) of 544 patients commenced therapy early and 267 (49%) commenced therapy late. For the primary analysis, we matched 213 patients in the early treatment group with 253 in the late treatment group. At baseline, the mean EDSS score was 2·2 (SD 1·2) in the early group and 2·1 (SD 1·2) in the late group. Median follow-up time for matched patients was 7·8 years (IQR 6·7–8·9). In the sixth year after disease onset, the mean EDSS score was 2·2 (SD 1·6) in the early group compared with 2·9 (SD 1·8) in the late group (p<0·0001). This difference persisted throughout each year of follow-up until the tenth year after disease onset (mean EDSS score 2·3 [SD 1·8] vs 3·5 [SD 2·1]; p<0·0001), with a difference between groups of −0·98 (95% CI −1·51 to −0·45; p<0·0001, adjusted for proportion of time on any disease-modifying therapy) across the 6–10 year follow-up period. High-efficacy therapy commenced within 2 years of disease onset is associated with less disability after 6–10 years than when commenced later in the disease course. This finding can inform decisions regarding optimal sequence and timing of multiple sclerosis therapy. National Health and Medical Research Council Australia and MS Society UK.
Correlation between leukocyte phenotypes and prognosis of amyotrophic lateral sclerosis
The prognostic role of immune cells in amyotrophic lateral sclerosis (ALS) remains undetermined. Therefore, we conducted a longitudinal cohort study including 288 ALS patients with up to 5-year follow-up during 2015–2020 recruited at the only tertiary referral center for ALS in Stockholm, Sweden, and measured the levels of differential leukocytes and lymphocyte subpopulations. The primary outcome was risk of death after diagnosis of ALS and the secondary outcomes included functional status and disease progression rate. Cox model was used to evaluate the associations between leukocytes and risk of death. Generalized estimating equation model was used to assess the correlation between leukocytes and functional status and disease progression rate. We found that leukocytes, neutrophils, and monocytes increased gradually over time since diagnosis and were negatively correlated with functional status, but not associated with risk of death or disease progression rate. For lymphocyte subpopulations, NK cells (HR= 0.61, 95% CI = [0.42–0.88] per SD increase) and Th2-diffrentiated CD4 + central memory T cells (HR= 0.64, 95% CI = [0.48–0.85] per SD increase) were negatively associated with risk of death, while CD4 + effector memory cells re-expressing CD45RA (EMRA) T cells (HR= 1.39, 95% CI = [1.01–1.92] per SD increase) and CD8 + T cells (HR= 1.38, 95% CI = [1.03–1.86] per SD increase) were positively associated with risk of death. None of the lymphocyte subpopulations was correlated with functional status or disease progression rate. Our findings suggest a dual role of immune cells in ALS prognosis, where neutrophils and monocytes primarily reflect functional status whereas NK cells and different T lymphocyte populations act as prognostic markers for survival.
T cell responses at diagnosis of amyotrophic lateral sclerosis predict disease progression
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease, involving neuroinflammation and T cell infiltration in the central nervous system. However, the contribution of T cell responses to the pathology of the disease is not fully understood. Here we show, by flow cytometric analysis of blood and cerebrospinal fluid (CSF) samples of a cohort of 89 newly diagnosed ALS patients in Stockholm, Sweden, that T cell phenotypes at the time of diagnosis are good predictors of disease outcome. High frequency of CD4 + FOXP3 − effector T cells in blood and CSF is associated with poor survival, whereas high frequency of activated regulatory T (Treg) cells and high ratio between activated and resting Treg cells in blood are associated with better survival. Besides survival, phenotypic profiling of T cells could also predict disease progression rate. Single cell transcriptomics analysis of CSF samples shows clonally expanded CD4 + and CD8 + T cells in CSF, with characteristic gene expression patterns. In summary, T cell responses associate with and likely contribute to disease progression in ALS, supporting modulation of adaptive immunity as a viable therapeutic option. Amyotrophic lateral sclerosis (ALS) is a primary neurodegenerative disease, which is characterized by increased immune cell infiltration of the central nervous system. Here authors show that the phenotypic profile of T cells in the blood and cerebrospinal fluid of newly diagnosed ALS patients can predict disease progression, thus providing evidence that T cells contribute to disease pathology.
Risk factors for amyotrophic lateral sclerosis
Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disease. It is typically fatal within 2-5 years of symptom onset. The incidence of ALS is largely uniform across most parts of the world, but an increasing ALS incidence during the last decades has been suggested. Although recent genetic studies have substantially improved our understanding of the causes of ALS, especially familial ALS, an important role of non-genetic factors in ALS is recognized and needs further study. In this review, we briefly discuss several major genetic contributors to ALS identified to date, followed by a more focused discussion on the most commonly examined non-genetic risk factors for ALS. We first review factors related to lifestyle choices, including smoking, intake of antioxidants, physical fitness, body mass index, and physical exercise, followed by factors related to occupational and environmental exposures, including electromagnetic fields, metals, pesticides, β-methylamino-L-alanine, and viral infection. Potential links between ALS and other medical conditions, including head trauma, metabolic diseases, cancer, and inflammatory diseases, are also discussed. Finally, we outline several future directions aiming to more efficiently examine the role of non-genetic risk factors in ALS.
Differential effects on blood and cerebrospinal fluid immune protein markers and kynurenine pathway metabolites from aerobic physical exercise in healthy subjects
Mounting evidence shows that physical exercise modulates systemic inflammation. However, its effect on cerebrospinal fluid (CSF) immune-marker profiles in man are largely unknown. We here report a study on healthy subjects (n = 27, males = 12, mean age 28.7, range 22–52) allocated to either an acute exercise setting over four consecutive days, or a training intervention over 4 weeks. Paired plasma and CSF samples collected at baseline, after 7 days of exercise abstention, and the day after completion of the exercise interventions, were analyzed for protein inflammation markers using a multiplex proximity extension assay and neurotransmitters and kynurenine pathway (KP) metabolites using liquid chromatography, respectively. Routine cell counts, and albumin, immunoglobulin G and neurofilament light chain concentrations in CSF remained unchanged in both paradigms, while several inflammatory proteins became upregulated after acute exercise. However, only changes in three CSF (vascular endothelial growth factor-A, interleukin-7 and matrix metalloproteinase-10) and 12 plasma proteins reached significance levels after adjustment for multiple comparisons and exclusion of less stable proteins. Similarly, KP metabolites only changed among participants after acute exercise, while neurotransmitter levels, except for increased CSF serine, remained stable. Both in plasma and CSF changes in KP metabolites and inflammatory proteins correlated, suggesting that these processes are functionally linked. These findings suggest that acute aerobic physical exercise affects immune markers and KP metabolites systemically and in the CSF.
Gsta4 controls apoptosis of differentiating adult oligodendrocytes during homeostasis and remyelination via the mitochondria-associated Fas-Casp8-Bid-axis
Arrest of oligodendrocyte (OL) differentiation and remyelination following myelin damage in multiple sclerosis (MS) is associated with neurodegeneration and clinical worsening. We show that Glutathione S-transferase 4α (Gsta4) is highly expressed during adult OL differentiation and that Gsta4 loss impairs differentiation into myelinating OLs in vitro. In addition, we identify Gsta4 as a target of both dimethyl fumarate, an existing MS therapy, and clemastine fumarate, a candidate remyelinating agent in MS. Overexpression of Gsta4 reduces expression of Fas and activity of the mitochondria-associated Casp8-Bid-axis in adult oligodendrocyte precursor cells, leading to improved OL survival during differentiation. The Gsta4 effect on apoptosis during adult OL differentiation was corroborated in vivo in both lysolecithin-induced demyelination and experimental autoimmune encephalomyelitis models, where Casp8 activity was reduced in Gsta4-overexpressing OLs. Our results identify Gsta4 as an intrinsic regulator of OL differentiation, survival and remyelination, as well as a potential target for future reparative MS therapies. Impaired oligodendrocyte (OL) differentiation and remyelination after myelin damage in multiple sclerosis is associated with neurodegeneration. The authors show that Gsta4 is expressed during adult OL differentiation and identify it as a regulator of OL differentiation, survival, and remyelination.
Proteomics reveal biomarkers for diagnosis, disease activity and long-term disability outcomes in multiple sclerosis
Sensitive and reliable protein biomarkers are needed to predict disease trajectory and personalize treatment strategies for multiple sclerosis (MS). Here, we use the highly sensitive proximity-extension assay combined with next-generation sequencing (Olink Explore) to quantify 1463 proteins in cerebrospinal fluid (CSF) and plasma from 143 people with early-stage MS and 43 healthy controls. With longitudinally followed discovery and replication cohorts, we identify CSF proteins that consistently predicted both short- and long-term disease progression. Lower levels of neurofilament light chain (NfL) in CSF is superior in predicting the absence of disease activity two years after sampling (replication AUC = 0.77) compared to all other tested proteins. Importantly, we also identify a combination of 11 CSF proteins (CXCL13, LTA, FCN2, ICAM3, LY9, SLAMF7, TYMP, CHI3L1, FYB1, TNFRSF1B and NfL) that predict the severity of disability worsening according to the normalized age-related MS severity score (replication AUC = 0.90). The identification of these proteins may help elucidate pathogenetic processes and might aid decisions on treatment strategies for persons with MS. Precise biomarkers for multiple sclerosis prognosis are vital for treatment decisions. Here, the authors identify specific proteins in cerebrospinal fluid that can predict short-term disease activity and long-term disability outcomes in persons with multiple sclerosis.
Confounding effect of blood volume and body mass index on blood neurofilament light chain levels
Blood Neurofilament light chain (NfL) has been suggested as a promising biomarker in several neurological conditions. Since blood NfL is the consequence of leaked NfL from the cerebrospinal fluid, differences in individuals’ Body Mass Index (BMI) or blood volume (BV) might affect its correlation to other biomarkers and disease outcomes. Here, we investigated the correlation between plasma NfL, BMI, and BV in 662 controls and 2,586 multiple sclerosis cases. We found a significant negative correlation between plasma NfL, BMI/BV in both groups. Our results highlight the potential confounding effect of BMI/BV on associations between blood NfL and disease outcomes.