Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
111
result(s) for
"Piel, Matthieu"
Sort by:
The physics of cell-size regulation across timescales
by
Venkova, Larisa
,
Piel, Matthieu
,
Cadart, Clotilde
in
Cell cycle
,
Physics
,
Regulatory mechanisms (biology)
2019
The size of a cell is determined by a combination of synthesis, self-assembly, incoming matter and the balance of mechanical forces. Such processes operate at the single-cell level, but they are deeply interconnected with cell-cycle progression, resulting in a stable average cell size at the population level. Here, we examine this phenomenon by reviewing the physics of growth processes that operate at vastly different timescales, but result in the controlled production of daughter cells that are close copies of their mothers. We first review the regulatory mechanisms of size at short timescales, focusing on the contribution of fundamental physical forces. We then discuss the multiple relevant regulation processes operating on the timescale of the cell cycle. Finally, we look at how these processes interact: one of the most important challenges to date involves bridging the gap between timescales, connecting the physics of cell growth and the biology of cell-cycle progression.
Journal Article
ESCRT Machinery Is Required for Plasma Membrane Repair
by
Piel, Matthieu
,
Lafaurie-Janvore, Julie
,
Maiuri, Paolo
in
Bacterial Proteins - pharmacology
,
Calcium
,
Calcium-Binding Proteins - genetics
2014
The ESCRT (endosomal sorting complex required for transport) protein complex plays a role in budding into multivesicular bodies, in cytokinesis, and in HIV budding. Now, Jimenez et al. (p. 10.1126/science.1247136 , published online 30 January) propose a role for ESCRT proteins in wound repair at the plasma membrane. In vivo imaging, modeling, and electron microscopy were used to reveal how the ESCRTs participate in a rapid energy-independent, calcium-dependent, membrane-shedding process at the plasma membrane that reseals small wounds caused by toxins or laser treatment. ESCRT proteins repair small wounds in the plasma membrane by shearing off damaged portions. Plasma membrane damage can be triggered by numerous phenomena, and efficient repair is essential for cell survival. Endocytosis, membrane patching, or extracellular budding can be used for plasma membrane repair. We found that endosomal sorting complex required for transport (ESCRT), involved previously in membrane budding and fission, plays a critical role in plasma membrane repair. ESCRT proteins were recruited within seconds to plasma membrane wounds. Quantitative analysis of wound closure kinetics coupled to mathematical modeling suggested that ESCRTs are involved in the repair of small wounds. Real-time imaging and correlative scanning electron microscopy (SEM) identified extracellular buds and shedding at the site of ESCRT recruitment. Thus, the repair of certain wounds is ensured by ESCRT-mediated extracellular shedding of wounded portions.
Journal Article
Volume growth in animal cells is cell cycle dependent and shows additive fluctuations
by
Venkova, Larisa
,
Piel, Matthieu
,
Cadart, Clotilde
in
Cell Biology
,
Cell cycle
,
Cell Cycle - physiology
2022
The way proliferating animal cells coordinate the growth of their mass, volume, and other relevant size parameters is a long-standing question in biology. Studies focusing on cell mass have identified patterns of mass growth as a function of time and cell cycle phase, but little is known about volume growth. To address this question, we improved our fluorescence exclusion method of volume measurement (FXm) and obtained 1700 single-cell volume growth trajectories of HeLa cells. We find that, during most of the cell cycle, volume growth is close to exponential and proceeds at a higher rate in S-G2 than in G1. Comparing the data with a mathematical model, we establish that the cell-to-cell variability in volume growth arises from constant-amplitude fluctuations in volume steps rather than fluctuations of the underlying specific growth rate. We hypothesize that such ‘additive noise’ could emerge from the processes that regulate volume adaptation to biophysical cues, such as tension or osmotic pressure.
Journal Article
Profilin and formin constitute a pacemaker system for robust actin filament growth
by
Venkova, Larisa
,
Funk, Johanna
,
Vargas, Pablo
in
Actin
,
Actin Cytoskeleton - metabolism
,
Animals
2019
The actin cytoskeleton drives many essential biological processes, from cell morphogenesis to motility. Assembly of functional actin networks requires control over the speed at which actin filaments grow. How this can be achieved at the high and variable levels of soluble actin subunits found in cells is unclear. Here we reconstitute assembly of mammalian, non-muscle actin filaments from physiological concentrations of profilin-actin. We discover that under these conditions, filament growth is limited by profilin dissociating from the filament end and the speed of elongation becomes insensitive to the concentration of soluble subunits. Profilin release can be directly promoted by formin actin polymerases even at saturating profilin-actin concentrations. We demonstrate that mammalian cells indeed operate at the limit to actin filament growth imposed by profilin and formins. Our results reveal how synergy between profilin and formins generates robust filament growth rates that are resilient to changes in the soluble subunit concentration.
Journal Article
ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death
2016
In eukaryotic cells, the nuclear envelope separates the genomic DNA from the cytoplasmic space and regulates protein trafficking between the two compartments. This barrier is only transiently dissolved during mitosis. Here, we found that it also opened at high frequency in migrating mammalian cells during interphase, which allowed nuclear proteins to leak out and cytoplasmic proteins to leak in. This transient opening was caused by nuclear deformation and was rapidly repaired in an ESCRT (endosomal sorting complexes required for transport)–dependent manner. DNA double-strand breaks coincided with nuclear envelope opening events. As a consequence, survival of cells migrating through confining environments depended on efficient nuclear envelope and DNA repair machineries. Nuclear envelope opening in migrating leukocytes could have potentially important consequences for normal and pathological immune responses.
Journal Article
Size control in mammalian cells involves modulation of both growth rate and cell cycle duration
2018
Despite decades of research, how mammalian cell size is controlled remains unclear because of the difficulty of directly measuring growth at the single-cell level. Here we report direct measurements of single-cell volumes over entire cell cycles on various mammalian cell lines and primary human cells. We find that, in a majority of cell types, the volume added across the cell cycle shows little or no correlation to cell birth size, a homeostatic behavior called “adder”. This behavior involves modulation of G1 or S-G2 duration and modulation of growth rate. The precise combination of these mechanisms depends on the cell type and the growth condition. We have developed a mathematical framework to compare size homeostasis in datasets ranging from bacteria to mammalian cells. This reveals that a near-adder behavior is the most common type of size control and highlights the importance of growth rate modulation to size control in mammalian cells.
The size of cells fluctuates but there are limited experimental methods to measure live mammalian cell sizes. Here, the authors track single cell volume (FXm) over the cell cycle and generate a mathematical framework to compare size homeostasis in datasets ranging from bacteria to mammalian cells.
Journal Article
A mechano-osmotic feedback couples cell volume to the rate of cell deformation
by
Cuvelier, Damien
,
Vassilopoulos, Stéphane
,
Lembo, Sergio
in
Actin
,
Actins - metabolism
,
Adhesives
2022
Mechanics has been a central focus of physical biology in the past decade. In comparison, how cells manage their size is less understood. Here, we show that a parameter central to both the physics and the physiology of the cell, its volume, depends on a mechano-osmotic coupling. We found that cells change their volume depending on the rate at which they change shape, when they spontaneously spread or when they are externally deformed. Cells undergo slow deformation at constant volume, while fast deformation leads to volume loss. We propose a mechanosensitive pump and leak model to explain this phenomenon. Our model and experiments suggest that volume modulation depends on the state of the actin cortex and the coupling of ion fluxes to membrane tension. This mechano-osmotic coupling defines a membrane tension homeostasis module constantly at work in cells, causing volume fluctuations associated with fast cell shape changes, with potential consequences on cellular physiology.
Journal Article
Perinuclear Arp2/3-driven actin polymerization enables nuclear deformation to facilitate cell migration through complex environments
2016
Cell migration has two opposite faces: although necessary for physiological processes such as immune responses, it can also have detrimental effects by enabling metastatic cells to invade new organs.
In vivo
, migration occurs in complex environments and often requires a high cellular deformability, a property limited by the cell nucleus. Here we show that dendritic cells, the sentinels of the immune system, possess a mechanism to pass through micrometric constrictions. This mechanism is based on a rapid Arp2/3-dependent actin nucleation around the nucleus that disrupts the nuclear lamina, the main structure limiting nuclear deformability. The cells’ requirement for Arp2/3 to pass through constrictions can be relieved when nuclear stiffness is decreased by suppressing lamin A/C expression. We propose a new role for Arp2/3 in three-dimensional cell migration, allowing fast-moving cells such as leukocytes to rapidly and efficiently migrate through narrow gaps, a process probably important for their function.
Cell migration through micrometric constraints is limited by low deformability of the nucleus. Here the authors show that in dendritic cells a perinuclear actin network nucleated by Arp2/3 increases nuclear deformation and allows the cells to pass through narrow constrictions, likely by rupturing the nuclear lamina.
Journal Article
mTOR and S6K1 drive polycystic kidney by the control of Afadin-dependent oriented cell division
2020
mTOR activation is essential and sufficient to cause polycystic kidneys in Tuberous Sclerosis Complex (TSC) and other genetic disorders. In disease models, a sharp increase of proliferation and cyst formation correlates with a dramatic loss of oriented cell division (OCD). We find that OCD distortion is intrinsically due to S6 kinase 1 (S6K1) activation. The concomitant loss of S6K1 in
Tsc1
-mutant mice restores OCD but does not decrease hyperproliferation, leading to non-cystic harmonious hyper growth of kidneys. Mass spectrometry-based phosphoproteomics for S6K1 substrates revealed Afadin, a known component of cell-cell junctions required to couple intercellular adhesions and cortical cues to spindle orientation. Afadin is directly phosphorylated by S6K1 and abnormally decorates the apical surface of
Tsc1
-mutant cells with E-cadherin and α-catenin. Our data reveal that S6K1 hyperactivity alters centrosome positioning in mitotic cells, affecting oriented cell division and promoting kidney cysts in conditions of mTOR hyperactivity.
mTOR activation is known to generate polycystic kidneys, which show both increased proliferation and loss of oriented cell division (OCD). Here, Bonucci et al. show that loss of OCD is linked to S6K1 activation through its direct target Afadin and is separable from hyperproliferation.
Journal Article
Contractility of the cell rear drives invasion of breast tumor cells in 3D Matrigel
2011
Cancer cells use different modes of migration, including integrin-dependent mesenchymal migration of elongated cells along elements of the 3D matrix as opposed to low-adhesion-, contraction-based amoeboid motility of rounded cells. We report that MDA-MB-231 human breast adenocarcinoma cells invade 3D Matrigel with a characteristic rounded morphology and with F-actin and myosin-IIa accumulating at the cell rear in a uropod-like structure. MDA-MB-231 cells display neither lamellipodia nor bleb extensions at the leading edge and do not require Arp2/3 complex activity for 3D invasion in Matrigel. Accumulation of phospho-MLC and blebbing activity were restricted to the uropod as reporters of actomyosin contractility, and velocimetric analysis of fluorescent beads embedded within the 3D matrix showed that pulling forces exerted to the matrix are restricted to the side and rear of cells. Inhibition of actomyosin contractility or β1 integrin function interferes with uropod formation, matrix deformation, and invasion through Matrigel. These findings support a model whereby actomyosin-based uropod contractility generates traction forces on the β1 integrin adhesion system to drive cell propulsion within the 3D matrix, with no contribution of lamellipodia extension or blebbing to movement.
Journal Article