Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
286 result(s) for "Pierce, Karen"
Sort by:
The ASD Living Biology: from cell proliferation to clinical phenotype
Autism spectrum disorder (ASD) has captured the attention of scientists, clinicians and the lay public because of its uncertain origins and striking and unexplained clinical heterogeneity. Here we review genetic, genomic, cellular, postmortem, animal model, and cell model evidence that shows ASD begins in the womb. This evidence leads to a new theory that ASD is a multistage, progressive disorder of brain development, spanning nearly all of prenatal life. ASD can begin as early as the 1st and 2nd trimester with disruption of cell proliferation and differentiation. It continues with disruption of neural migration, laminar disorganization, altered neuron maturation and neurite outgrowth, disruption of synaptogenesis and reduced neural network functioning. Among the most commonly reported high-confidence ASD (hcASD) genes, 94% express during prenatal life and affect these fetal processes in neocortex, amygdala, hippocampus, striatum and cerebellum. A majority of hcASD genes are pleiotropic, and affect proliferation/differentiation and/or synapse development. Proliferation and subsequent fetal stages can also be disrupted by maternal immune activation in the 1st trimester. Commonly implicated pathways, PI3K/AKT and RAS/ERK, are also pleiotropic and affect multiple fetal processes from proliferation through synapse and neural functional development. In different ASD individuals, variation in how and when these pleiotropic pathways are dysregulated, will lead to different, even opposing effects, producing prenatal as well as later neural and clinical heterogeneity. Thus, the pathogenesis of ASD is not set at one point in time and does not reside in one process, but rather is a cascade of prenatal pathogenic processes in the vast majority of ASD toddlers. Despite this new knowledge and theory that ASD biology begins in the womb, current research methods have not provided individualized information: What are the fetal processes and early-age molecular and cellular differences that underlie ASD in each individual child? Without such individualized knowledge, rapid advances in biological-based diagnostic, prognostic, and precision medicine treatments cannot occur. Missing, therefore, is what we call ASD Living Biology. This is a conceptual and paradigm shift towards a focus on the abnormal prenatal processes underlying ASD within each living individual. The concept emphasizes the specific need for foundational knowledge of a living child’s development from abnormal prenatal beginnings to early clinical stages. The ASD Living Biology paradigm seeks this knowledge by linking genetic and in vitro prenatal molecular, cellular and neural measurements with in vivo post-natal molecular, neural and clinical presentation and progression in each ASD child. We review the first such study, which confirms the multistage fetal nature of ASD and provides the first in vitro fetal-stage explanation for in vivo early brain overgrowth. Within-child ASD Living Biology is a novel research concept we coin here that advocates the integration of in vitro prenatal and in vivo early post-natal information to generate individualized and group-level explanations, clinically useful prognoses, and precision medicine approaches that are truly beneficial for the individual infant and toddler with ASD.
A phenotypic spectrum of autism is attributable to the combined effects of rare variants, polygenic risk and sex
The genetic etiology of autism spectrum disorder (ASD) is multifactorial, but how combinations of genetic factors determine risk is unclear. In a large family sample, we show that genetic loads of rare and polygenic risk are inversely correlated in cases and greater in females than in males, consistent with a liability threshold that differs by sex. De novo mutations (DNMs), rare inherited variants and polygenic scores were associated with various dimensions of symptom severity in children and parents. Parental age effects on risk for ASD in offspring were attributable to a combination of genetic mechanisms, including DNMs that accumulate in the paternal germline and inherited risk that influences behavior in parents. Genes implicated by rare variants were enriched in excitatory and inhibitory neurons compared with genes implicated by common variants. Our results suggest that a phenotypic spectrum of ASD is attributable to a spectrum of genetic factors that impact different neurodevelopmental processes. Integrated analyses in a large collection of families provide insights into the combined effects of rare variants and polygenic risk on autism spectrum disorder.
Large scale validation of an early-age eye-tracking biomarker of an autism spectrum disorder subtype
Few clinically validated biomarkers of ASD exist which can rapidly, accurately, and objectively identify autism during the first years of life and be used to support optimized treatment outcomes and advances in precision medicine. As such, the goal of the present study was to leverage both simple and computationally-advanced approaches to validate an eye-tracking measure of social attention preference, the GeoPref Test, among 1,863 ASD, delayed, or typical toddlers (12–48 months) referred from the community or general population via a primary care universal screening program. Toddlers participated in diagnostic and psychometric evaluations and the GeoPref Test: a 1-min movie containing side-by-side dynamic social and geometric images. Following testing, diagnosis was denoted as ASD, ASD features, LD, GDD, Other, typical sibling of ASD proband, or typical. Relative to other diagnostic groups, ASD toddlers exhibited the highest levels of visual attention towards geometric images and those with especially high fixation levels exhibited poor clinical profiles. Using the 69% fixation threshold, the GeoPref Test had 98% specificity, 17% sensitivity, 81% PPV, and 65% NPV. Sensitivity increased to 33% when saccades were included, with comparable validity across sex, ethnicity, or race. The GeoPref Test was also highly reliable up to 24 months following the initial test. Finally, fixation levels among twins concordant for ASD were significantly correlated, indicating that GeoPref Test performance may be genetically driven. As the GeoPref Test yields few false positives (~ 2%) and is equally valid across demographic categories, the current findings highlight the ability of the GeoPref Test to rapidly and accurately detect autism before the 2nd birthday in a subset of children and serve as a biomarker for a unique ASD subtype in clinical trials.
Functional connectivity of the human face network exhibits right hemispheric lateralization from infancy to adulthood
Adults typically exhibit right hemispheric dominance in the processing of faces. In this cross-sectional study, we investigated age-dependent changes in face processing lateralization from infancy to adulthood (1–48 years old; N = 194). We co-registered anatomical and resting state functional Magnetic Resonance Imaging (fMRI) scans of toddlers, children, adolescents, and adults into a common space and examined functional connectivity across the face, as well as place, and object-selective regions identified in adults. As expected, functional connectivity between core face-selective regions was stronger in the right compared to the left hemisphere in adults. Most importantly, the same lateralization was evident in all other age groups (infants, children, adolescents) and appeared only in face-selective regions, and not in place or object-selective regions. These findings suggest that the physiological development of face-selective brain areas may differ from that of object and place-selective areas. Specifically, the functional connectivity of the core-face selective regions exhibits rightward lateralization from infancy, years before these areas develop mature face-selective responses.
Default mode-visual network hypoconnectivity in an autism subtype with pronounced social visual engagement difficulties
Social visual engagement difficulties are hallmark early signs of autism (ASD) and are easily quantified using eye tracking methods. However, it is unclear how these difficulties are linked to atypical early functional brain organization in ASD. With resting state fMRI data in a large sample of ASD toddlers and other non-ASD comparison groups, we find ASD-related functional hypoconnnectivity between ‘social brain’ circuitry such as the default mode network (DMN) and visual and attention networks. An eye tracking-identified ASD subtype with pronounced early social visual engagement difficulties (GeoPref ASD) is characterized by marked DMN-occipito-temporal cortex (OTC) hypoconnectivity. Increased DMN-OTC hypoconnectivity is also related to increased severity of social-communication difficulties, but only in GeoPref ASD. Early and pronounced social-visual circuit hypoconnectivity is a key underlying neurobiological feature describing GeoPref ASD and may be critical for future social-communicative development and represent new treatment targets for early intervention in these individuals. Many parents of children with autism spectrum disorder (ASD) spot the first signs when their child is still a toddler, by noticing that their child is less interested than other toddlers in people and in social play. These early differences in behavior can have long-term implications for brain development. The brains of toddlers with little interest in social stimuli will receive less social input than those of other toddlers. This will make it even harder for the brain to develop the circuits required to support social skills. But even among children with ASD, there are large differences in children's interest in the social world. One way of measuring these differences is to track eye movements. Lombardo et al. presented toddlers with and without ASD with images of moving colorful geometric shapes next to videos of dancing children. The majority of toddlers, including most of those with ASD, spent more time looking at the children than the shapes. But about 20% of the toddlers with ASD spent most of their time looking at the shapes. These toddlers also had the most severe social symptoms. To find out why, Lombardo et al. measured the toddlers' brain activity while they slept. During sleep, or when at rest, the brain shows stereotyped patterns of activity. Groups of brain regions that work together – such as those involved in vision – fire in synchrony. Lombardo et al. found that toddlers who preferred looking at shapes over people showed different patterns of brain activity while asleep compared to other children. In the toddlers who preferred shapes, brain networks involved in social skills were less likely to coordinate their activity with networks that support vision and attention. These findings suggest there may be multiple subtypes of ASD, with different symptoms resulting from different patterns of brain activity. At present, all children who receive a diagnosis of ASD receive much the same behavioral therapy. But in the future, studies of brain networks could allow children to receive more specific diagnoses. This could in turn lead to more effective and personalized treatments.
Differences in regional brain structure in toddlers with autism are related to future language outcomes
Language and social symptoms improve with age in some autistic toddlers, but not in others, and such outcome differences are not clearly predictable from clinical scores alone. Here we aim to identify early-age brain alterations in autism that are prognostic of future language ability. Leveraging 372 longitudinal structural MRI scans from 166 autistic toddlers and 109 typical toddlers and controlling for brain size, we find that, compared to typical toddlers, autistic toddlers show differentially larger or thicker temporal and fusiform regions; smaller or thinner inferior frontal lobe and midline structures; larger callosal subregion volume; and smaller cerebellum. Most differences are replicated in an independent cohort of 75 toddlers. These brain alterations improve accuracy for predicting language outcome at 6-month follow-up beyond intake clinical and demographic variables. Temporal, fusiform, and inferior frontal alterations are related to autism symptom severity and cognitive impairments at early intake ages. Among autistic toddlers, brain alterations in social, language and face processing areas enhance the prediction of the child’s future language ability. Identifying prognostic early-age brain disruptions is crucial for autism. Here the authors show that social, language and face regions are disrupted in autistic toddlers, and anatomic measures of them improve accuracy in predicting future language ability.
The geometric preference subtype in ASD: identifying a consistent, early-emerging phenomenon through eye tracking
Background The wide range of ability and disability in ASD creates a need for tools that parse the phenotypic heterogeneity into meaningful subtypes. Using eye tracking, our past studies revealed that when presented with social and geometric images, a subset of ASD toddlers preferred viewing geometric images, and these toddlers also had greater symptom severity than ASD toddlers with greater social attention. This study tests whether this “GeoPref test” effect would generalize across different social stimuli. Methods Two hundred and twenty-seven toddlers (76 ASD) watched a 90-s video, the Complex Social GeoPref test, of dynamic geometric images paired with social images of children interacting and moving. Proportion of visual fixation time and number of saccades per second to both images were calculated. To allow for cross-paradigm comparisons, a subset of 126 toddlers also participated in the original GeoPref test. Measures of cognitive and social functioning (MSEL, ADOS, VABS) were collected and related to eye tracking data. To examine utility as a diagnostic indicator to detect ASD toddlers, validation statistics (e.g., sensitivity, specificity, ROC, AUC) were calculated for the Complex Social GeoPref test alone and when combined with the original GeoPref test. Results ASD toddlers spent a significantly greater amount of time viewing geometric images than any other diagnostic group. Fixation patterns from ASD toddlers who participated in both tests revealed a significant correlation, supporting the idea that these tests identify a phenotypically meaningful ASD subgroup. Combined use of both original and Complex Social GeoPref tests identified a subgroup of about 1 in 3 ASD toddlers from the “GeoPref” subtype (sensitivity 35%, specificity 94%, AUC 0.75.) Replicating our previous studies, more time looking at geometric images was associated with significantly greater ADOS symptom severity. Conclusions Regardless of the complexity of the social images used (low in the original GeoPref test vs high in the new Complex Social GeoPref test), eye tracking of toddlers can accurately identify a specific ASD “GeoPref” subtype with elevated symptom severity. The GeoPref tests are predictive of ASD at the individual subject level and thus potentially useful for various clinical applications (e.g., early identification, prognosis, or development of subtype-specific treatments).
Atypical functional connectivity of temporal cortex with precuneus and visual regions may be an early-age signature of ASD
Background Social and language abilities are closely intertwined during early typical development. In autism spectrum disorder (ASD), however, deficits in social and language development are early-age core symptoms. We previously reported that superior temporal cortex, a well-established social and language region, shows reduced activation to social affective speech in ASD toddlers; however, the atypical cortical connectivity that accompanies this deviance remains unknown. Methods We collected clinical, eye tracking, and resting-state fMRI data from 86 ASD and non-ASD subjects (mean age 2.3 ± 0.7 years). Functional connectivity of left and right superior temporal regions with other cortical regions and correlations between this connectivity and each child’s social and language abilities were examined. Results While there was no group difference in functional connectivity, the connectivity between superior temporal cortex and frontal and parietal regions was significantly correlated with language, communication, and social abilities in non-ASD subjects, but these effects were absent in ASD subjects. Instead, ASD subjects, regardless of different social or nonsocial visual preferences, showed atypical correlations between temporal–visual region connectivity and communication ability ( r (49) = 0.55, p  < 0.001) and between temporal–precuneus connectivity and expressive language ability ( r (49) = 0.58, p  < 0.001). Limitations The distinct connectivity–behavior correlation patterns may be related to different developmental stages in ASD and non-ASD subjects. The use of a prior 2-year-old template for spatial normalization may not be optimal for a few subjects beyond this age range. Conclusions Superior temporal cortex is known to have reduced activation to social affective speech in ASD at early ages, and here we find in ASD toddlers that it also has atypical connectivity with visual and precuneus cortices that is correlated with communication and language ability, a pattern not seen in non-ASD toddlers. This atypicality may be an early-age signature of ASD that also explains why the disorder has deviant early language and social development. Given that these atypical connectivity patterns are also present in older individuals with ASD, we conclude these atypical connectivity patterns persist across age and may explain why successful interventions targeting language and social skills at all ages in ASD are so difficult to achieve.
Multiple freeze-thaw cycles lead to a loss of consistency in poly(A)-enriched RNA sequencing
Background Both RNA-Seq and sample freeze-thaw are ubiquitous. However, knowledge about the impact of freeze-thaw on downstream analyses is limited. The lack of common quality metrics that are sufficiently sensitive to freeze-thaw and RNA degradation, e.g. the RNA Integrity Score, makes such assessments challenging. Results Here we quantify the impact of repeated freeze-thaw cycles on the reliability of RNA-Seq by examining poly(A)-enriched and ribosomal RNA depleted RNA-seq from frozen leukocytes drawn from a toddler Autism cohort. To do so, we estimate the relative noise, or percentage of random counts, separating technical replicates. Using this approach we measured noise associated with RIN and freeze-thaw cycles. As expected, RIN does not fully capture sample degradation due to freeze-thaw. We further examined differential expression results and found that three freeze-thaws should extinguish the differential expression reproducibility of similar experiments. Freeze-thaw also resulted in a 3′ shift in the read coverage distribution along the gene body of poly(A)-enriched samples compared to ribosomal RNA depleted samples, suggesting that library preparation may exacerbate freeze-thaw-induced sample degradation. Conclusion The use of poly(A)-enrichment for RNA sequencing is pervasive in library preparation of frozen tissue, and thus, it is important during experimental design and data analysis to consider the impact of repeated freeze-thaw cycles on reproducibility. Graphical abstract
A 3D approach to understanding heterogeneity in early developing autisms
Background Phenotypic heterogeneity in early language, intellectual, motor, and adaptive functioning (LIMA) features are amongst the most striking features that distinguish different types of autistic individuals. Yet the current diagnostic criteria uses a single label of autism and implicitly emphasizes what individuals have in common as core social-communicative and restricted repetitive behavior difficulties. Subtype labels based on the non-core LIMA features may help to more meaningfully distinguish types of autisms with differing developmental paths and differential underlying biology. Methods Unsupervised data-driven subtypes were identified using stability-based relative clustering validation on publicly available Mullen Scales of Early Learning (MSEL) and Vineland Adaptive Behavior Scales (VABS) data (n = 615; age = 24–68 months) from the National Institute of Mental Health Data Archive (NDA). Differential developmental trajectories between subtypes were tested on longitudinal data from NDA and from an independent in-house dataset from UCSD. A subset of the UCSD dataset was also tested for subtype differences in functional and structural neuroimaging phenotypes and relationships with blood gene expression. The current subtyping model was also compared to early language outcome subtypes derived from past work. Results Two autism subtypes can be identified based on early phenotypic LIMA features. These data-driven subtypes are robust in the population and can be identified in independent data with 98% accuracy. The subtypes can be described as Type I versus Type II autisms differentiated by relatively high versus low scores on LIMA features. These two types of autisms are also distinguished by different developmental trajectories over the first decade of life. Finally, these two types of autisms reveal striking differences in functional and structural neuroimaging phenotypes and their relationships with gene expression and may highlight unique biological mechanisms. Limitations Sample sizes for the neuroimaging and gene expression dataset are relatively small and require further independent replication. The current work is also limited to subtyping based on MSEL and VABS phenotypic measures. Conclusions This work emphasizes the potential importance of stratifying autism by a Type I versus Type II distinction focused on LIMA features and which may be of high prognostic and biological significance.