Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
39 result(s) for "Pieri, Federica"
Sort by:
Lysyl oxidase engineered lipid nanovesicles for the treatment of triple negative breast cancer
In the field of oncology research, a deeper understanding of tumor biology has shed light on the role of environmental conditions surrounding cancer cells. In this regard, targeting the tumor microenvironment has recently emerged as a new way to access this disease. In this work, a novel extracellular matrix (ECM)-targeting nanotherapeutic was engineered using a lipid-based nanoparticle chemically linked to an inhibitor of the ECM-related enzyme, lysyl oxidase 1 (LOX), that inhibits the crosslinking of elastin and collagen fibers. We demonstrated that, when the conjugated vesicles were loaded with the chemotherapeutic epirubicin, superior inhibition of triple negative breast cancer (TNBC) cell growth was observed both in vitro and in vivo. Moreover, in vivo results displayed prolonged survival, minimal cytotoxicity, and enhanced biocompatibility compared to free epirubicin and epirubicin-loaded nanoparticles. This all-in-one nano-based ECM-targeting chemotherapeutic may provide a key-enabling technology for the treatment of TNBC.
Management and potentialities of primary cancer cultures in preclinical and translational studies
The use of patient-derived primary cell cultures in cancer preclinical assays has increased in recent years. The management of resected tumor tissue remains complex and a number of parameters must be respected to obtain complete sample digestion and optimal vitality yield. We provide an overview of the benefits of correct primary cell culture management using different preclinical methodologies, and describe the pros and cons of this model with respect to other kinds of samples. One important advantage is that the heterogeneity of the cell populations composing a primary culture partially reproduces the tumor microenvironment and crosstalk between malignant and healthy cells, neither of which is possible with cell lines. Moreover, the use of patient-derived specimens in innovative preclinical technologies, such as 3D systems or bioreactors, represents an important opportunity to improve the translational value of the results obtained. In vivo models could further our understanding of the crosstalk between tumor and other tissues as they enable us to observe the systemic and biological interactions of a complete organism. Although engineered mice are the most common model used in this setting, the zebrafish ( Danio rerio ) species has recently been recognized as an innovative experimental system. In fact, the transparent body and incomplete immune system of zebrafish embryos are especially useful for evaluating patient-derived tumor tissue interactions in healthy hosts. In conclusion, ex vivo systems represent an important tool for cancer research, but samples require correct manipulation to maximize their translational value.
Myxofibrosarcoma landscape: diagnostic pitfalls, clinical management and future perspectives
Myxofibrosarcoma (MFS) is a common entity of adult soft tissue sarcomas (STS) characterized by a predilection of the extremities and a high local recurrence rate. Originally classified as a myxoid variant of malignant fibrous histiocytoma, this musculoskeletal tumor has been recognized since 2002 as a distinct histotype showing a spectrum of malignant fibroblastic lesions with myxoid stroma, pleomorphism and curvilinear vessels. Currently, the molecular pathogenesis of MFS is still poorly understood and its genomic profile exhibits a complex karyotype with a number of aberrations including amplifications, deletions and loss of function. The diagnosis is challenging due to the unavailability of specific immunohistochemical markers and is based on the analysis of cytomorphologic features. The mainstay of treatment for localized disease is represented by surgical resection, with (neo)-adjuvant radio- and chemotherapy. In the metastatic setting, chemotherapy represents the backbone of treatments, however its role is still controversial and the outcome is very poor. Recent advent of genomic profiling, targeted therapies and larger enrollment of patients in translational and clinical studies, have improved the understanding of biological behavior and clinical outcome of such a disease. This review will provide an overview of current diagnostic pitfalls and clinical management of MFS. Finally, a look at future directions will be discussed.
Combined use of 177Lu-DOTATATE and metronomic capecitabine (Lu-X) in FDG-positive gastro-entero-pancreatic neuroendocrine tumors
PurposeFDG-positive neuroendocrine tumors (NETs) have a poorer prognosis and exhibit shorter response duration to peptide receptor radionuclide therapy (PRRT). The aim of this prospective phase II study was to evaluate the efficacy and toxicity of PRRT with 177Lu-DOTATATE associated with metronomic capecitabine as a radiosensitizer agent in patients with advanced progressive FDG-positive gastro-entero-pancreatic (GEP) NETs.Patients and methodsPatients with advanced somatostatin receptor- and FDG-positive G1-G3 GEP-NETs (Ki67 < 55%) were treated with a cumulative activity of 27.5 GBq of 177Lu-DOTATATE divided in five cycles of 5.5 GBq each every 8 weeks. Capecitabine (1000–1500 mg daily) was administered orally in the inter-cycle period between 177Lu-DOTATATE treatments. Prior to commencing capecitabine, all patients were triaged with the dihydropyrimidine dehydrogenase (DPD) test. Only DPD-proficient individuals were enrolled. The primary objectives were disease control rate (DCR) and safety. Secondary aims included progression-free (PFS) and overall survival (OS). Treatment response was assessed per Response Evaluation Criteria in Solid Tumors, version 1.1 (RECIST 1.1). Toxicity was assessed by Common Terminology Criteria for Adverse Events (CTCAE) version 4.0.ResultsFrom August 2015 to December 2016, 37 subjects were consecutively enrolled. A total of 25 (68%) were affected by pancreatic neuroendocrine tumors (P-NETs), and 12 (32%) had gastrointestinal neuroendocrine tumors (GI-NETs). By grading (WHO 2010 classification), 12 patients (32%) had G1 (Ki67 ≤ 2%), 22 (59%) had G2 (3% < Ki67 ≤ 20%), and 3 patients (9%) had G3 (Ki67 > 20%) NETs. Grade 3 (G3) or 4 (G4) hematological toxicity occurred in 16.2% of patients. Other G3-G4 adverse events were diarrhea in 5.4% of cases and asthenia in 5.4%. No renal toxicity was observed for the duration of follow-up. In 37 patients, 33 were evaluable for response. Objective responses included partial response (PR) in 10 patients (30%) and stable disease (SD) in 18 patients (55%), with a DCR of 85%. The median follow-up was 38 months (range 4.6–51.1 months). The median PFS was 31.4 months (17.6–45.4), and mOS was not reached.ConclusionsThis study demonstrated that the combination of PRRT with 177Lu-DOTATATE and metronomic capecitabine is active and well tolerated in patients with aggressive FDG-positive G1-G3 GEP-NETs. These data constitute the basis for a randomized study of PPRT alone vs. PRRT plus metronomic capecitabine.
Unveiling the Genomic Basis of Chemosensitivity in Sarcomas of the Extremities: An Integrated Approach for an Unmet Clinical Need
Myxofibrosarcoma (MFS) and undifferentiated pleomorphic sarcoma (UPS) can be considered as a spectrum of the same disease entity, representing one of the most common adult soft tissue sarcoma (STS) of the extremities. While MFS is rarely metastasizing, it shows an extremely high rate of multiple frequent local recurrences (50–60% of cases). On the other hand, UPS is an aggressive sarcoma prone to distant recurrence, which is correlated to a poor prognosis. Differential diagnosis is challenging due to their heterogeneous morphology, with UPS remaining a diagnosis of exclusion for sarcomas with unknown differentiation lineage. Moreover, both lesions suffer from the unavailability of diagnostic and prognostic biomarkers. In this context, a genomic approach combined with pharmacological profiling could allow the identification of new predictive biomarkers that may be exploited for differential diagnosis, prognosis and targeted therapy, with the aim to improve the management of STS patients. RNA-Seq analysis identified the up-regulation of MMP13 and WNT7B in UPS and the up-regulation of AKR1C2, AKR1C3, BMP7, and SGCG in MFS, which were confirmed by in silico analyses. Moreover, we identified the down-regulation of immunoglobulin genes in patient-derived primary cultures that responded to anthracycline treatment compared to non-responder cultures. Globally, the obtained data corroborated the clinical observation of UPS as an histotype refractory to chemotherapy and the key role of the immune system in determining chemosensitivity of these lesions. Moreover, our results confirmed the validity of genomic approaches for the identification of predictive biomarkers in poorly characterized neoplasms as well as the robustness of our patient-derived primary culture models in recapitulating the chemosensitivity features of STS. Taken as a whole, this body of evidence may pave the way toward an improvement of the prognosis of these rare diseases through a treatment modulation driven by a biomarker-based patient stratification.
Clinical and translational implications of immunotherapy in sarcomas
Immunotherapy has emerged as promising treatment in sarcomas, but the high variability in terms of histology, clinical behavior and response to treatments determines a particular challenge for its role in these neoplasms. Tumor immune microenvironment (TiME) of sarcomas reflects the heterogeneity of these tumors originating from mesenchymal cells and encompassing more than 100 histologies. Advances in the understanding of the complexity of TiME have led to an improvement of the immunotherapeutic responsiveness in sarcomas, that at first showed disappointing results. The proposed immune-classification of sarcomas based on the interaction between immune cell populations and tumor cells showed to have a prognostic and potential predictive role for immunotherapies. Several studies have explored the clinical impact of immune therapies in the management of these histotypes leading to controversial results. The presence of Tumor Infiltrating Lymphocytes (TIL) seems to correlate with an improvement in the survival of patients and with a higher responsiveness to immunotherapy. In this context, it is important to consider that also immune-related genes (IRGs) have been demonstrated to have a key role in tumorigenesis and in the building of tumor immune microenvironment. The IRGs landscape in soft tissue and bone sarcomas is characterized by the connection between several tumor-related genes that can assume a potential prognostic and predictive therapeutic role. In this paper, we reviewed the state of art of the principal immune strategies in the management of sarcomas including their clinical and translational relevance.
The potential role of the extracellular matrix in the activity of trabectedin in UPS and L-sarcoma: evidences from a patient‐derived primary culture case series in tridimensional and zebrafish models
Background Soft tissue sarcomas (STS) are a rare group of solid neoplasm including among others liposarcoma, leiomyosarcoma (L-sarcoma) and undifferentiated pleomorphic sarcoma (UPS) entities. The current first-line treatment is represented by anthracycline based- regimens, second-line may include trabectedin. Currently the activity of trabectedin and its mechanism of action is not completely elucidated. Methods Taking the advantages of our 3D patient-derived primary culture translational model we performed genomic-, chemobiogram, proteomic- and in vivo analysis in a UPS culture (S1). Furthermore pharmacological profiling of a UPS and L-sarcoma patient-derived case series and in silico analysis were carried out. Results Trabectedin exhibited an increased activity in 3D respect to 2D cultures suggesting an extracellular matrix (ECM) and timp1 involvement in its mechanism of action. Moreover 3D S1 xenotranspanted zebrafish model showed an increased sensitivity to trabectedin. Finally the results were further validated in a UPS and L-sarcoma case series. Conclusions Taken together these results confirmed the activity of trabectedin in these STS histotypes. Moreover the data underline the ECM involvement in the cytotoxic effect mediated by trabectedin and could open the door for researches aimed to focus on the patient setting that could benefit from this agent.
Diagnostic and Predictive Role of DLL3 Expression in Gastroenteropancreatic Neuroendocrine Neoplasms
Gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) are a rare and heterogeneous subgroup of tumors with a challenging management because of their extremely variable biological and clinical behaviors. Due to their different prognosis, there is an urgent need to identify molecular markers which would enable to discriminate between grade 3 neuroendocrine tumors (NETs) and neuroendocrine carcinomas (NECs), despite both being diagnosed mainly on the basis of proliferation index and cell differentiation. DLL3, a negative Notch regulator, is a promising molecular target highly expressed in several tumors with neuroendocrine features. We conducted a retrospective analysis of DLL3, RB1, and PD-L1 expression by immunohistochemistry (IHC), in formalin-fixed, paraffin-embedded (FFPE) samples from 47 patients with GEP-NENs. Then, we correlated the results with patients’ clinical features and outcome. The absence of DLL3 expression in 5 well-differentiated GEP-NETs with high-grade features (G3 NET), and the presence of DLL3 in 76.9% of poorly-differentiated NECs (G3 NEC), highlights DLL3 expression as a marker of G3 NECs (p = 0.007). DLL3 expression was correlated with RB1-loss (p < 0.001), negative 68 Ga-PET/CT scan (p = 0.001), and an unfavorable clinical outcome, with important implications for treatment response and patient’s follow-up. Median progression-free survival (PFS) and overall survival (OS) were 22.7 months (95% CI 6.1–68.8) and 68.8 months (95% CI 26.0–78.1), respectively, in patients with DLL3-negative tumor compared with 5.2 months (95% CI 2.5–18.5) and 9.5 months (95% CI 2.5–25.2), respectively, in patients with DLL3-positive tumor (PFS p = 0.0083, OS p = 0.0071). Therefore, combined with morphological cell analysis, DLL3 could represent a valuable histological marker, for the diagnosis of poorly differentiated NECs. The high percentage of DLL3 expression in NEC patients also highlights a potential opportunity for a DLL3 targeted therapy in this tumor subset.
Deciphering the Genomic Landscape and Pharmacological Profile of Uncommon Entities of Adult Rhabdomyosarcomas
Adult rhabdomyosarcoma (RMS) represents an uncommon entity with an incidence of less than 3% of all soft tissue sarcomas (STS). Consequently, the natural history and the clinical management of this disease are infrequently reported. In order to fill this gap, we investigated the molecular biology of an adult RMS case series. The expression of epithelial mesenchymal transition-related gene and chemoresistance-related gene panels were evaluated. Moreover, taking advantage of our STS translational model combining patient-derived primary culture and 3D-scaffold, the pharmacological profile of an adult head and neck sclerosing RMS was assessed. Furthermore, NGS, microsatellite instability, and in silico analyses were carried out. RT-PCR identified the upregulation of CDH1, SLUG, MMP9, RAB22a, S100P, and LAPTM4b, representing promising biomarkers for this disease. Pharmacological profiling showed the highest sensitivity with anthracycline-based regimen in both 2D and 3D culture systems. NGS analysis detected RAB3IP-HMGA2 in frame gene rearrangement and FGFR4 mutation; microsatellite instability analysis did not detect any alteration. In silico analysis confirmed the mutation of FGFR4 as a promising marker for poor prognosis and a potential therapeutic target. We report for the first time the molecular and pharmacological characterization of rare entities of adult head and neck and posterior trunk RMS. These preliminary data could shed light on this poorly understood disease.
A Rationale for the Activity of Bone Target Therapy and Tyrosine Kinase Inhibitor Combination in Giant Cell Tumor of Bone and Desmoplastic Fibroma: Translational Evidences
Giant cell tumor of bone (GCTB) and desmoplastic fibroma (DF) are bone sarcomas with intermediate malignant behavior and unpredictable prognosis. These locally aggressive neoplasms exhibit a predilection for the long bone or mandible of young adults, causing a severe bone resorption. In particular, the tumor stromal cells of these lesions are responsible for the recruiting of multinucleated giant cells which ultimately lead to bone disruption. In this regard, the underlying pathological mechanism of osteoclastogenesis processes in GCTB and DF is still poorly understood. Although current therapeutic strategy involves surgery, radiotherapy and chemotherapy, the benefit of the latter is still debated. Thus, in order to shed light on these poorly investigated diseases, we focused on the molecular biology of GCTB and DF. The expression of bone-vicious-cycle- and neoangiogenesis-related genes was investigated. Moreover, combining patient-derived primary cultures with 2D and 3D culture platforms, we investigated the role of denosumab and levantinib in these diseases. The results showed the upregulation of RANK-L, RANK, OPN, CXCR4, RUNX2 and FLT1 and the downregulation of OPG and CXCL12 genes, underlining their involvement and promising role in these neoplasms. Furthermore, in vitro analyses provided evidence for suggesting the combination of denosumab and lenvatinib as a promising therapeutic strategy in GCTB and DF compared to monoregimen chemotherapy. Furthermore, in vivo zebrafish analyses corroborated the obtained data. Finally, the clinical observation of retrospectively enrolled patients confirmed the usefulness of the reported results. In conclusion, here we report for the first time a molecular and pharmacological investigation of GCTB and DF combining the use of translational and clinical data. Taken together, these results represent a starting point for further analyses aimed at improving GCTB and DF management.