Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
11 result(s) for "Pilarczyk, Maciej"
Sort by:
The CXCL1-CXCR2 Axis as a Component of Therapy Resistance, a Source of Side Effects in Cancer Treatment, and a Therapeutic Target
CXCL1 (Gro-α, MGSA) is a chemokine functionally similar to CXCL8/IL-8, as both activate the same receptor, CXCR2. CXCL1 levels are frequently elevated in tumors compared to healthy tissue, where they play a key role in promoting cancer cell migration, angiogenesis, and neutrophil recruitment. While the involvement of CXCL1 in tumor progression is well established, its relevance to cancer therapy remains underexplored. This review examines the therapeutic potential of targeting CXCL1 and its receptor, CXCR2, in cancer treatment. It discusses anti-CXCL1 antibodies and CXCR2 antagonists, including AZD5069, SB225002, SCH-479833, navarixin/SCH-527123, ladarixin/DF2156A, and reparixin, as well as strategies to enhance CXCR2 expression in lymphocytes during adoptive cell therapy to improve immunotherapy outcomes. Particular attention is given to the role of CXCL1 in treatment resistance, including resistance to chemotherapy, radiotherapy, and anti-angiogenic therapy. Cancer therapies often upregulate CXCL1 expression, which in turn drives treatment resistance. Additionally, this review explores the contribution of CXCL1 to therapy-induced side effects, such as chemotherapy-induced metastasis, neuropathy, nephrotoxicity, diarrhea, and cardiotoxicity. CXCR2 inhibitors are well tolerated by patients in clinical trials. However, the limited number of studies evaluating these agents in combination with standard chemotherapy precludes any definitive conclusions.
Screening for Coping Style Increases the Power of Gene Expression Studies
Individuals of many vertebrate species show different stress coping styles and these have a striking influence on how gene expression shifts in response to a variety of challenges. This is clearly illustrated by a study in which common carp displaying behavioural predictors of different coping styles (characterised by a proactive, adrenaline-based or a reactive, cortisol-based response) were subjected to inflammatory challenge and specific gene transcripts measured in individual brains. Proactive and reactive fish differed in baseline gene expression and also showed diametrically opposite responses to the challenge for 80% of the genes investigated. Incorporating coping style as an explanatory variable can account for some the unexplained variation that is common in gene expression studies, can uncover important effects that would otherwise have passed unnoticed and greatly enhances the interpretive value of gene expression data.
Phospholipid Acyltransferases: Characterization and Involvement of the Enzymes in Metabolic and Cancer Diseases
This review delves into the enzymatic processes governing the initial stages of glycerophospholipid (phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine) and triacylglycerol synthesis. The key enzymes under scrutiny include GPAT and AGPAT. Additionally, as most AGPATs exhibit LPLAT activity, enzymes participating in the Lands cycle with similar functions are also covered. The review begins by discussing the properties of these enzymes, emphasizing their specificity in enzymatic reactions, notably the incorporation of polyunsaturated fatty acids (PUFAs) such as arachidonic acid and docosahexaenoic acid (DHA) into phospholipids. The paper sheds light on the intricate involvement of these enzymes in various diseases, including obesity, insulin resistance, and cancer. To underscore the relevance of these enzymes in cancer processes, a bioinformatics analysis was conducted. The expression levels of the described enzymes were correlated with the overall survival of patients across 33 different types of cancer using the GEPIA portal. This review further explores the potential therapeutic implications of inhibiting these enzymes in the treatment of metabolic diseases and cancer. By elucidating the intricate enzymatic pathways involved in lipid synthesis and their impact on various pathological conditions, this paper contributes to a comprehensive understanding of these processes and their potential as therapeutic targets.
Observations of carbon-nitrogen manipulation and periphyton growth stimulation on fish farming in an integrated intensive-extensive aquaculture system
The results of the observations showed better water quality and higher fish production in pond B, but no differences were noted in sturgeon growth performance in system A. The combination of these modifications appeared to be an efficient way of increasing nutrient retention and improving water quality. Keywords: extensive carp production, integrated aquaculture systems, intensive sturgeon production, nutrient retention, wastewater utilization Introduction The growth of intensive aquaculture production in recent years and the related problem of ensuring that discharged waters are of adequate quality have prompted the search for alternative waste disposal methods. The amount of carbohydrate supplementation was evaluated based on published data and was the theoretical stoichiometric C/N proportion in bacterial cells taking into account the nitrogen load introduced with the feed and the ammonia concentration in the pond water (Avnimelech et al. 1994, Avnimelech 1999, Playchoom et al. 2011). Feed conversion ratios (FCR), specific growth rates (SGR), and body weight gain were calculated.
Molecular Monitoring Of Bacterial And Microalgal Biocenoses' Biodiversity In High Loaded Farming Ponds
Eutrophication process is a serious problem in water ecosystems. There is a great need to study the relation between the physico-chemical condition of water and the influence of these parameters on the diversity of biological life, especially on changes in the structure of microbiocenoses. The most interesting are bacteria and microalgae, due to the important roles they play in maintaining the balance of the aquatic environment. In this study, biodiversity analysis of eukaryotic microalgae and bacteria in two artificial water ecosystems - fish farming ponds - was performed. Aquaculture was based on IMTA technology, in which every part of the trophic chain plays a significant role in maintaining the balance in the ecosystems. Experimental intensive - extensive systems differed in terms of nutrient loads, ponds were characterized by high loads of organic and inorganic nitrogen and phosphorus. During the experimental period, the physicochemical conditions, quantitative genotypic structure of the two biocenoses being studied and the relation between these factors were monitored and investigated. For the biodiversity analysis, the PCR - DGGE technique was used. The results of preliminary research showed that there is a correlation between nutrient loads, diversity expressed in the Shannon-Wiener Index and the overall condition of experimental systems. Higher loadings of nutrient promote the development of bacteria and microalgae without any influence on the balance in the artificial ecosystem being tested.
Mobile sailing robot for automatic estimation of fish density and monitoring water quality
Introduction The paper presents the methodology and the algorithm developed to analyze sonar images focused on fish detection in small water bodies and measurement of their parameters: volume, depth and the GPS location. The final results are stored in a table and can be exported to any numerical environment for further analysis. Material and method The measurement method for estimating the number of fish using the automatic robot is based on a sequential calculation of the number of occurrences of fish on the set trajectory. The data analysis from the sonar concerned automatic recognition of fish using the methods of image analysis and processing. Results Image analysis algorithm, a mobile robot together with its control in the 2.4 GHz band and full cryptographic communication with the data archiving station was developed as part of this study. For the three model fish ponds where verification of fish catches was carried out (548, 171 and 226 individuals), the measurement error for the described method was not exceeded 8%. Summary Created robot together with the developed software has features for remote work also in the variety of harsh weather and environmental conditions, is fully automated and can be remotely controlled using Internet. Designed system enables fish spatial location (GPS coordinates and the depth). The purpose of the robot is a non-invasive measurement of the number of fish in water reservoirs and a measurement of the quality of drinking water consumed by humans, especially in situations where local sources of pollution could have a significant impact on the quality of water collected for water treatment for people and when getting to these places is difficult. The systematically used robot equipped with the appropriate sensors, can be part of early warning system against the pollution of water used by humans (drinking water, natural swimming pools) which can be dangerous for their health.
Light intensity-induced photocurrent switching effect
A better control over processes responsible for the photocurrent generation in semiconductors and nanocomposites is essential in the fabrication of photovoltaic devices, efficient photocatalysts and optoelectronic elements. Therefore, new approaches towards photochemical properties tuning are intensively searched for. Among numerous parameters, the photocurrent polarity is of great importance to the overall performance of a device. Usually, the polarity is controlled through an alignment of electronic states/bands, tailoring of applied potential or suitable selection of incident light wavelengths. In most scenarios though, the influence of light intensity is somehow neglected and either some arbitrarily chosen, natural conditions are mimicked or this parameter is varied only in a narrow range. Here we present a ternary nanocomposite in which the persistent photocurrent polarity switching is achieved through changes in the light intensity. We also present arguments suggesting this behaviour is of a general character and should be considered also in other photochemical systems. A better understanding of processes responsible for photocurrent generation in semiconductors and nanocomposites is essential in many applications. Here, authors use a ZnO-based hybrid material to demonstrate an unusual photocurrent switching effect induced by varying irradiation intensities.
Potential for a precision measurement of solar pp neutrinos in the Serappis experiment
The Serappis (SEarch for RAre PP-neutrinos In Scintillator) project aims at a precision measurement of the flux of solar pp neutrinos on the few-percent level. Such a measurement will be a relevant contribution to the study of solar neutrino oscillation parameters and a sensitive test of the equilibrium between solar energy output in neutrinos and electromagnetic radiation (solar luminosity constraint). The concept of Serappis relies on a small organic liquid scintillator detector (∼20 m3) with excellent energy resolution (∼2.5% at 1 MeV), low internal background and sufficient shielding from surrounding radioactivity. This can be achieved by a minor upgrade of the OSIRIS facility at the site of the JUNO neutrino experiment in southern China. To go substantially beyond current accuracy levels for the pp flux, an organic scintillator with ultra-low 14C levels (below 10-18) is required. The existing OSIRIS detector and JUNO infrastructure will be instrumental in identifying suitable scintillator materials, offering a unique chance for a low-budget high-precision measurement of a fundamental property of our Sun that will be otherwise hard to access.
Framework guidelines for the process of caring for the health of adolescent transgender (T) and non-binary (NB) people experiencing gender dysphoria — the position statement of the expert panel
This article presents framework guidelines for the care of adolescent transgender (T) and non-binary (NB) individuals experiencing gender dysphoria (GD) and/or gender incongruence (GI). Developed by a multidisciplinary expert panel, these guidelines aim to address the complex medical, psychological, and social needs of this diverse population. The document emphasises the importance of individualised, affirmative care that respects the autonomy, identity, and rights of adolescents. It outlines best practices for psychiatric, psychological, and sexological assessment; criteria and protocols for gender-affirming hormonal interventions (GAHI) and puberty suppression; and ethical considerations for medical decision-making. The guidelines advocate for comprehensive support systems, including family involvement and multidisciplinary team collaboration, while addressing co-occurring mental health conditions and neurodiversity. The article also highlights global perspectives on gender-affirming care, comparing practices and policies across countries to provide a contextualised approach that aligns with international standards while addressing local legal and healthcare frameworks. The proposed care model is designed to enhance the mental and physical well-being of adolescents, reduce stigma, and improve their overall quality of life. This work serves as a vital resource for healthcare professionals, policymakers, and advocates seeking to advance equitable, effective, and compassionate care for gender-diverse youths.
The Effect of Risk Factors on the Levels of Chemical Elements in the Tibial Plateau of Patients with Osteoarthritis following Knee Surgery
The aim of this study was to evaluate the aforementioned chemical elements in tibial plateau samples obtained during knee arthroplasty. The gender-specific analysis of chemical element levels in the bone samples revealed that there were statistically significant differences in the concentration of Pb and Se/Pb ratio. The contents of elements in the tibial plateau in the patients with osteoarthritis (OA) can be arranged in the following descending order: F− > K > Zn > Fe > Sr > Pb > Mn > Se > Cd > THg. We observed statistical significant effects of environmental factors including smoking, seafood diet, and geographical distribution on the levels of the elements in tibial bone. Significant positive correlation coefficients were found for the relationships K-Cd, Zn-Sr, Zn-F−, THg-Pb, Pb-Cd, Se-Se/Pb, Se-Se/Cd, Se/Pb-Se/Cd, Pb-Cd/Ca, Cd-Cd/Ca, and F−-F−/Ca·1000. Significant negative correlations were found for the relationships THg-Se/Pb, Pb-Se/Pb, Cd-Se/Pb, K-Se/Cd, Pb-Se/Cd, Cd-Se/Cd, THg-Se/THg, Pb-Se/THg, Se-Pb/Cd, Zn-Cd/Ca, and Se/Cd-Cd/Ca. The results reported here may provide a basis for establishing reference values for the tibial plateau in patients with OA who had undergone knee replacement surgery. The concentrations of elements in the bone with OA were determined by age, presence of implants, smoking, fish and seafood diet, and sport activity.