Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
11 result(s) for "Pillai, Smitha P. S."
Sort by:
Species and age related differences in the type and distribution of influenza virus receptors in different tissues of chickens, ducks and turkeys
We undertook one of the most detailed studies on the distribution of α2,3 sialic acid (SA)-galactose (gal) (avian type) and α2,6SA-gal (human type) receptors on different tissues of chickens, ducks and turkeys of varying age groups. On the tracheal epithelium, all 3 bird species expressed strong positive staining (80-90%) for α2,3SA-gal receptors in the 3 different age groups. In addition, a lesser amount of α2,6SA-gal receptors (30-90%) were observed with slight differences in distribution with age and species. The epithelium of the small and large intestine of turkeys and ducks showed negligible staining for α2,6SA-gal receptors whereas the large intestine consistently showed 40-70% positive staining for α2,3SA-gal receptors. In contrast, a greater amount of staining for α2,3SA-gal (50-80%) and α2,6SA-gal (20-50%) receptors were observed along the epithelium of small and large intestine of chickens. Kidney and esophagus sections from the 3 bird species also expressed both avian and human type receptors. In other tissues examined, brain, breast muscles, bursa, spleen, cecal tonsils and oviduct, human type receptors were absent. Though different viral and receptor components may play roles in successful viral replication and transmission, understanding the receptor types and distribution in different tissues of domestic birds might be good initial tool to understand host factors that promote successful influenza viral infection.
In situ programming of leukaemia-specific T cells using synthetic DNA nanocarriers
An emerging approach for treating cancer involves programming patient-derived T cells with genes encoding disease-specific chimeric antigen receptors (CARs), so that they can combat tumour cells once they are reinfused. Although trials of this therapy have produced impressive results, the in vitro methods they require to generate large numbers of tumour-specific T cells are too elaborate for widespread application to treat cancer patients. Here, we describe a method to quickly program circulating T cells with tumour-recognizing capabilities, thus avoiding these complications. Specifically, we demonstrate that DNA-carrying nanoparticles can efficiently introduce leukaemia-targeting CAR genes into T-cell nuclei, thereby bringing about long-term disease remission. These polymer nanoparticles are easy to manufacture in a stable form, which simplifies storage and reduces cost. Our technology may therefore provide a practical, broadly applicable treatment that can generate anti-tumour immunity ‘on demand’ for oncologists in a variety of settings. DNA-carrying nanoparticles can efficiently introduce leukaemia-targeting CAR genes into T cell nuclei, thereby inducing long-term disease remission.
An aged immune system drives senescence and ageing of solid organs
Ageing of the immune system, or immunosenescence, contributes to the morbidity and mortality of the elderly 1 , 2 . To define the contribution of immune system ageing to organism ageing, here we selectively deleted Ercc1 , which encodes a crucial DNA repair protein 3 , 4 , in mouse haematopoietic cells to increase the burden of endogenous DNA damage and thereby senescence 5 – 7 in the immune system only. We show that Vav-iCre +/− ;Ercc1 −/fl mice were healthy into adulthood, then displayed premature onset of immunosenescence characterized by attrition and senescence of specific immune cell populations and impaired immune function, similar to changes that occur during ageing in wild-type mice 8 – 10 . Notably, non-lymphoid organs also showed increased senescence and damage, which suggests that senescent, aged immune cells can promote systemic ageing. The transplantation of splenocytes from Vav-iCre +/− ;Ercc1 −/fl or aged wild-type mice into young mice induced senescence in trans , whereas the transplantation of young immune cells attenuated senescence. The treatment of Vav-iCre +/− ;Ercc1 −/fl mice with rapamycin reduced markers of senescence in immune cells and improved immune function 11 , 12 . These data demonstrate that an aged, senescent immune system has a causal role in driving systemic ageing and therefore represents a key therapeutic target to extend healthy ageing. An aged, senescent immune system has a causal role in driving systemic ageing, and the targeting of senescent immune cells with senolytic drugs has the potential to suppress morbidities associated with old age.
Biopolymers codelivering engineered T cells and STING agonists can eliminate heterogeneous tumors
Therapies using T cells that are programmed to express chimeric antigen receptors (CAR T cells) consistently produce positive results in patients with hematologic malignancies. However, CAR T cell treatments are less effective in solid tumors for several reasons. First, lymphocytes do not efficiently target CAR T cells; second, solid tumors create an immunosuppressive microenvironment that inactivates T cell responses; and third, solid cancers are typified by phenotypic diversity and thus include cells that do not express proteins targeted by the engineered receptors, enabling the formation of escape variants that elude CAR T cell targeting. Here, we have tested implantable biopolymer devices that deliver CAR T cells directly to the surfaces of solid tumors, thereby exposing them to high concentrations of immune cells for a substantial time period. In immunocompetent orthotopic mouse models of pancreatic cancer and melanoma, we found that CAR T cells can migrate from biopolymer scaffolds and eradicate tumors more effectively than does systemic delivery of the same cells. We have also demonstrated that codelivery of stimulator of IFN genes (STING) agonists stimulates immune responses to eliminate tumor cells that are not recognized by the adoptively transferred lymphocytes. Thus, these devices may improve the effectiveness of CAR T cell therapy in solid tumors and help protect against the emergence of escape variants.
Validation of a geropathology grading system for aging mouse studies
An understanding of early-onset mechanisms underlying age-related changes can be obtained by evaluating changes that precede frailty and end of life using histological characterization of age-related lesions. Histopathology-based information as a component of aging studies in mice can complement and add context to molecular, cellular, and physiologic data, but there is a lack of information regarding scoring criteria and lesion grading guidelines. This report describes the validation of a grading system, designated as the geropathology grading platform (GGP), which generated a composite lesion score (CLS) for comparison of histological lesion scores in tissues from aging mice. To assess reproducibility of the scoring system, multiple veterinary pathologists independently scored the same slides from the heart, lung, liver, and kidney from two different strains (C57BL/6 and CB6F1) of male mice at 8, 16, 24, and 32 months of age. There was moderate to high agreement between pathologists, particularly when agreement within a 1-point range was considered. CLS for all organs was significantly higher in older versus younger mice, suggesting that the GGP was reliable for detecting age-related pathology in mice. The overall results suggest that the GGP guidelines reliably distinguish between younger and older mice and may therefore be accurate in distinguishing between experimental groups of mice with more, or less, age-related pathology.
INTRAUTERINE FETAL DEATH WITH SUBSEQUENT QUILL EXFOLIATION AND DISSEMINATION IN A NORTH AMERICAN PORCUPINE (ERETHIZON DORSATUM)
An adult female, wild North American porcupine (Erethizon dorsatum) presented with bilateral cataracts and naso-ocular discharge. A pregnancy was identified by radiography with a near–full-term fetus, which was delivered stillborn 4 wk later with hard, developed quills. At that time, a repeated examination and further imaging, including computed tomography, demonstrated a uterine mass that was identified as a choriocarcinoma following ovariohysterectomy. Additionally, numerous exfoliated quills were discovered throughout the abdomen, most of which were removed during the surgical procedure. Ultimately, development of peritonitis despite medical care led to the porcupine's death. Necropsy confirmed a wide migration of the quills with extensive serosal adhesions and granulomas affecting liver, lungs, urinary bladder, kidneys, and gastrointestinal tract.
Chemical compass behaviour at microtesla magnetic fields strengthens the radical pair hypothesis of avian magnetoreception
The fact that many animals, including migratory birds, use the Earth’s magnetic field for orientation and compass-navigation is fascinating and puzzling in equal measure. The physical origin of these phenomena has not yet been fully understood, but arguably the most likely hypothesis is based on the radical pair mechanism (RPM). Whilst the theoretical framework of the RPM is well-established, most experimental investigations have been conducted at fields several orders of magnitude stronger than the Earth’s. Here we use transient absorption spectroscopy to demonstrate a pronounced orientation-dependence of the magnetic field response of a molecular triad system in the field region relevant to avian magnetoreception. The chemical compass response exhibits the properties of an inclination compass as found in migratory birds. The results underline the feasibility of a radical pair based avian compass and also provide further guidelines for the design and operation of exploitable chemical compass systems. Many animals use the Earth’s magnetic field for orientation, yet the underlying principles are poorly understood. The authors show that a molecular triad acts as a chemical compass in magnetic fields of similar magnitude to that of the Earth, supporting the hypothesis that photo-initiated quantum processes underlie bird magnetoreception.
Sustainable Utilization of Bio waste towards the Green Synthesis of Nanoparticles and its Utility in the Naked Eye Detection of Metals Coupled with its Larvicidal and Antimicrobial Properties
Green synthesis of nanoparticles has become a prominent zone of attention in the field of nanotechnology, as it is a nontoxic, economically feasible and green approach. In the present work we have developed an eco-friendly and zero cost method for the synthesis of silver nanoparticles using common a bio waste banana blossom peel. The well-known characteristic phenomenon of surface Plasmon resonance (SPR) has been exploited towards the characterization of the green synthesized nanoparticles. The aforementioned nanoparticles were characterized by UV spectroscopy and the behaviour of these particles towards naked eye detection of metal ions were observed. The sensitivity of the nanoparticles towards the detection of metal ions was carefully monitored by the shift in the SPR band. Moreover the larvicidal potential of these green synthesized silver nanoparticles were evaluated as per WHO standards. The synthesized silver nanoparticles were found to be an effective antibacterial agent against Gram negative bacteria-E.coli. The method we followed for the synthesis of silver nanoparticles is economically feasible as well as environment friendly and also capable of rapid synthesis of nanoparticles at ambient conditions.
Effect of aging temperature on the porosity characteristics of subcritically dried silica aerogels
Silica aerogels were synthesised by subcritical drying technique which involves controlled solvent exchange and aging of the wet gel in silane solution followed by drying under controlled conditions. Effect of temperature of aging in silane solution on the porosity characteristics of silica aerogels and the thermal pore stability of the resultant gels were investigated. Aging in silane solution leads to an increased degree of condensation reactions, siloxane crosslinking and the dissolution and reprecipitation of silica monomers to the gel structure and enhances the total strength of the gel. Thermal aging of the wet gel have a pronounced effect on bulk density, linear drying shrinkage, surface area and pore volume. As the temperature of aging increases the bulk density decreases whereas the surface area and pore volume were found to increase. We could achieve a surface area of 1040 m^sup 2^/g, pore volume 1.2 cc/g and an average pore size of 49 Å corresponding to an aging temperature of 70 °C. Thermal pore stability of the gel was found to be up to 700 °C above which densification of SiO^sub 2^ gel starts. The novel findings will help in tailoring the process parameters to prepare mesoporous oxides from sol-gel precursors with specific pore features.[PUBLICATION ABSTRACT]
Nicotine induces cell proliferation by  -arrestin-mediated activation of Src and Rb-Raf-1 pathways
Recent studies have shown that nicotine, a component of cigarette smoke, can stimulate the proliferation of non-neuronal cells. While nicotine is not carcinogenic by itself, it has been shown to induce cell proliferation and angiogenesis. Here we find that mitogenic effects of nicotine in non-small cell lung cancers (NSCLCs) are analogous to those of growth factors and involve activation of Src, induction of Rb-Raf-1 interaction, and phosphorylation of Rb. Analysis of human NSCLC tumors show enhanced levels of Rb-Raf-1 complexes compared with adjacent normal tissue. The mitogenic effects of nicotine were mediated via the alpha7-nAChR subunit and resulted in enhanced recruitment of E2F1 and Raf-1 on proliferative promoters in NSCLC cell lines and human lung tumors. Nicotine stimulation of NSCLC cells caused dissociation of Rb from these promoters. Proliferative signaling via nicotinic acetylcholine receptors (nAChRs) required the scaffolding protein beta-arrestin; ablation of beta-arrestin or disruption of the Rb-Raf-1 interaction blocked nicotine-induced proliferation of NSCLCs. Additionally, suppression of beta-arrestin also blocked activation of Src, suppressed levels of phosphorylated ERK, and abrogated Rb-Raf-1 binding in response to nicotine. It appears that nicotine induces cell proliferation by beta-arrestin-mediated activation of the Src and Rb-Raf-1 pathways.