Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
77 result(s) for "Pillow, J Jane"
Sort by:
Physiology and Predictors of Impaired Gas Exchange in Infants with Bronchopulmonary Dysplasia
A sensitive outcome measure for infants with bronchopulmonary dysplasia would facilitate clinical benchmarking and enhance epidemiologic understanding, evaluation of clinical interventions, and outcome prediction. Noninvasive assessment of pulmonary gas exchange in preterm infants with and without bronchopulmonary dysplasia to grade disease severity and to identify determinants of impaired gas exchange. This is a prospective observational study in very preterm infants. Inspired oxygen partial pressure (Pi ) was decreased stepwise to achieve oxygen saturation as measured by pulse oximetry (Sp ) that decreased from 95% to 86%. Right shift, a/ , and right-left shunt were derived from the resulting Sp versus Pi curve and compared with current disease severity classification. Potential determinants of shift, a/ , and shunt were identified using principal components analysis and multiple linear regression. A total of 219 infants with median (interquartile range) gestation of 28 weeks and 0 days (26 weeks and 0 days to 29 weeks and 0 days) had a valid study at 35 weeks and 4 days (34 weeks and 1 day to 39 weeks and 3 days) of postmenstrual age. Shift increased and a/ decreased as severity of bronchopulmonary dysplasia increased. Infants with moderate-severe disease also had increased shunt. Extent of impaired gas exchange overlapped between severity groups. Infants requiring mechanical support but no supplemental oxygen at 36 weeks' postmenstrual age had similar values of shift, a/ , and shunt to preterm infants without bronchopulmonary dysplasia. Lower gestation and increased duration of invasive ventilation independently predicted increased shift, decreased a/ , and increased shunt. Shift was the most sensitive and specific index of the severity of bronchopulmonary dysplasia. Most infants with bronchopulmonary dysplasia have impaired oxygenation quantified by a simple, sensitive bedside test. Shift of the Sp /Pi curve may be useful for prediction and measurement of preterm infant respiratory outcomes.
The effect of human amnion epithelial cells on lung development and inflammation in preterm lambs exposed to antenatal inflammation
Lung inflammation and impaired alveolarization are hallmarks of bronchopulmonary dysplasia (BPD). We hypothesize that human amnion epithelial cells (hAECs) are anti-inflammatory and reduce lung injury in preterm lambs born after antenatal exposure to inflammation. Pregnant ewes received either intra-amniotic lipopolysaccharide (LPS, from E.coli 055:B5; 4mg) or saline (Sal) on day 126 of gestation. Lambs were delivered by cesarean section at 128 d gestation (term ~150 d). Lambs received intravenous hAECs (LPS/hAECs: n = 7; 30x10.sup.6 cells) or equivalent volumes of saline (LPS/Sal, n = 10; or Sal/Sal, n = 9) immediately after birth. Respiratory support was gradually de-escalated, aimed at early weaning from mechanical ventilation towards unassisted respiration. Lung tissue was collected 1 week after birth. Lung morphology was assessed and mRNA levels for inflammatory mediators were measured. Respiratory support required by LPS/hAEC lambs was not different to Sal/Sal or LPS/Sal lambs. Lung tissue:airspace ratio was lower in the LPS/Sal compared to Sal/Sal lambs (P<0.05), but not LPS/hAEC lambs. LPS/hAEC lambs tended to have increased septation in their lungs versus LPS/Sal (P = 0.08). Expression of inflammatory cytokines was highest in LPS/hAECs lambs. Postnatal administration of a single dose of hAECs stimulates a pulmonary immune response without changing ventilator requirements in preterm lambs born after intrauterine inflammation.
Effect of Preterm Birth on Cardiac and Cardiomyocyte Growth and the Consequences of Antenatal and Postnatal Glucocorticoid Treatment
Preterm birth coincides with a key developmental window of cardiac growth and maturation, and thus has the potential to influence long-term cardiac function. Individuals born preterm have structural cardiac remodelling and altered cardiac growth and function by early adulthood. The evidence linking preterm birth and cardiovascular disease in later life is mounting. Advances in the perinatal care of preterm infants, such as glucocorticoid therapy, have improved survival rates, but at what cost? This review highlights the short-term and long-term impact of preterm birth on the structure and function of the heart and focuses on the impact of antenatal and postnatal glucocorticoid treatment on the immature preterm heart.
Brain inflammation and injury at 48 h is not altered by human amnion epithelial cells in ventilated preterm lambs
BackgroundMechanical ventilation of preterm neonates is associated with neuroinflammation and an increased risk of adverse neurological outcomes. Human amnion epithelial cells (hAECs) have anti-inflammatory and regenerative properties. We aimed to determine if intravenous administration of hAECs to preterm lambs would reduce neuroinflammation and injury at 2 days of age.MethodsPreterm lambs were delivered by cesarean section at 128−130 days’ gestation (term is ~147 days) and either ventilated for 48 h or humanely killed at birth. Lambs received 3 mL surfactant (Curosurf) via endotracheal tube prior to delivery (either with or without 90 × 106 hAECs) and 3 mL intravenous phosphate-buffered saline (with or without 90 × 106 hAECs, consistent with intratracheal treatment) after birth.ResultsVentilation increased microglial activation, total oligodendrocyte cell number, cell proliferation and blood−brain barrier permeability (P < 0.05, PBS + ventilation and hAEC + ventilation vs. control), but did not affect numbers of immature and mature oligodendrocytes. Ventilation reduced astrocyte and neuron survival (P < 0.05, PBS + ventilation and hAEC + ventilation vs. control). hAEC administration did not alter markers of neuroinflammation or injury within the white or gray matter.ConclusionsMechanical ventilation for 48 h upregulated markers of neuroinflammation and injury in preterm lambs. Administration of hAECs did not affect markers of neuroinflammation or injury.ImpactMechanical ventilation of preterm lambs for 48 h, in a manner consistent with contemporary neonatal intensive care, causes neuroinflammation, neuronal loss and pathological changes in oligodendrocyte and astrocyte survival consistent with evolving neonatal brain injury.Intravenous administration of hAECs immediately after birth did not affect neonatal cardiorespiratory function and markers of neuroinflammation or injury.Reassuringly, our findings in a translational large animal model demonstrate that intravenous hAEC administration to the preterm neonate is safe.Considering that hAECs are being used in phase 1 trials for the treatment of BPD in preterm infants, with future trials planned for neonatal neuroprotection, we believe these observations are highly relevant.
Bioprospecting microbes and enzymes for the production of pterocarpans and coumestans
The isoflavonoid derivatives, pterocarpans and coumestans, are explored for multiple clinical applications as osteo-regenerative, neuroprotective and anti-cancer agents. The use of plant-based systems to produce isoflavonoid derivatives is limited due to cost, scalability, and sustainability constraints. Microbial cell factories overcome these limitations in which model organisms such as Saccharomyces cerevisiae offer an efficient platform to produce isoflavonoids. Bioprospecting microbes and enzymes can provide an array of tools to enhance the production of these molecules. Other microbes that naturally produce isoflavonoids present a novel alternative as production chassis and as a source of novel enzymes. Enzyme bioprospecting allows the complete identification of the pterocarpans and coumestans biosynthetic pathway, and the selection of the best enzymes based on activity and docking parameters. These enzymes consolidate an improved biosynthetic pathway for microbial-based production systems. In this review, we report the state-of-the-art for the production of key pterocarpans and coumestans, describing the enzymes already identified and the current gaps. We report available databases and tools for microbial bioprospecting to select the best production chassis. We propose the use of a holistic and multidisciplinary bioprospecting approach as the first step to identify the biosynthetic gaps, select the best microbial chassis, and increase productivity. We propose the use of microalgal species as microbial cell factories to produce pterocarpans and coumestans. The application of bioprospecting tools provides an exciting field to produce plant compounds such as isoflavonoid derivatives, efficiently and sustainably.
Elevated leukotriene B4 and 8-isoprostane in exhaled breath condensate from preterm-born infants
Background Inflammation and oxidative stress play a key role in the development of bronchopulmonary dysplasia (BPD), possibly contributing to persistent respiratory morbidity after preterm birth. We aimed to assess if inflammatory markers were elevated in exhaled breath condensate (EBC) of infants born very prematurely (< 32 weeks gestation) at 12–16 corrected months of age, and if increased levels were associated with BPD diagnosis and respiratory morbidity. Methods EBC samples and respiratory questionnaires were collected from 15 term-born infants and 33 preterm-born infants, 12 with a neonatal BPD diagnosis. EBC samples were analysed for leukotriene B4 (inflammation) and 8-isoprostane (oxidative stress) concentrations using enzyme-linked immune-assays. Differences between groups were analysed by Kruskal-Wallis Test with post-hoc comparisons, independent samples t-test or Mann-Whitney U test depending on normality of the data. Results Leukotriene B4 and 8-isoprostane levels were elevated in exhaled breath condensate of preterm-born infants compared to those born at term (mean difference [95% CI]; 1.52 [0.45, 2.59], p = 0.02; 0.77 [0.52, 1.02], p < 0.001, respectively). Leukotriene B4 and 8-isoprostane levels were independent of BPD diagnosis and respiratory morbidity over the first year of life. Conclusions Infants born very prematurely exhibit elevated markers of airway neutrophilic inflammation and oxidative stress beyond the first year of life, regardless of a neonatal diagnosis of chronic lung disease or respiratory morbidity during infancy. These findings may have implications for future lung health. Trial Registration N/A.
Lung abnormalities do not influence aerobic capacity in school children born preterm
PurposeChildren born preterm have impaired lung function and altered lung structure. However, there are conflicting reports on how preterm birth impacts aerobic exercise capacity in childhood. We aimed to investigate how neonatal history and a diagnosis of bronchopulmonary dysplasia (BPD) impact the relationship between function and structure of the lung, and aerobic capacity in school-aged children born very preterm.MethodsPreterm children (≤ 32 w completed gestation) aged 9–12 years with (n = 38) and without (n = 35) BPD, and term-born controls (n = 31), underwent spirometry, lung volume measurements, gas transfer capacity, a high-resolution computer tomography (CT) scan of the chest, and an incremental treadmill exercise test.ResultsChildren born preterm with BPD had an elevated breathing frequency to tidal volume ratio compared to term controls (76% vs 63%, p = 0.002). The majority (88%) of preterm children had structural changes on CT scan. There were no differences in peak V̇O2 (47.1 vs 47.7 mL/kg/min, p = 0.407) or oxygen uptake efficiency slope when corrected for body weight (67.6 vs 67.3, p = 0.5) between preterm children with BPD and term controls. There were no differences in any other exercise outcomes. The severity of structural lung disease was not associated with exercise outcomes in this preterm population.ConclusionChildren born preterm have impaired lung function, and a high prevalence of structural lung abnormalities. However, abnormal lung function and structure do not appear to impact on the aerobic exercise capacity of preterm children at school age.
Brief, Large Tidal Volume Ventilation Initiates Lung Injury and a Systemic Response in Fetal Sheep
Premature infants are exposed to potentially injurious ventilation in the delivery room. Assessments of lung injury are confounded by effects of subsequent ventilatory support. To evaluate the injury response to a brief period of large tidal volume (Vt) ventilation, simulating neonatal resuscitation in preterm neonates. Preterm lambs (129 d gestation; term is150 d) were ventilated (Vt = 15 ml/kg, no positive end-expiratory pressure) for 15 minutes to simulate delivery room resuscitation, either with the placental circulation intact (fetal resuscitation [ FR]) or after delivery (neonatal resuscitation [NR]). After the initial 15 minutes, lambs received surfactant and were maintained with either ventilatory support (FR-VS and NR-VS) or placental support (FR-PS) for 2 hours, 45 minutes. A control group received no resuscitation and was maintained with placental support. Samples of bronchoalveolar lavage fluid, lung, and liver were analyzed. Inflammatory cells and protein in bronchoalveolar lavage fluid, heat shock protein-70 immunostaining, IL-1beta, IL-6, IL-8, monocyte chemotactic protein-1, serum amyloid A (SAA)-3, Toll-like receptor (TLR)-2, and TLR4 mRNA in the lungs were increased in the FR-PS group compared with control animals. There were further elevations in neutrophils, IL-6, and IL-8 mRNA in the FR-VS and NR-VS groups compared with FR-PS. SAA3, TLR2, and TLR4 mRNA increased in the liver in all resuscitation groups relative to control animals. Ventilation for 15 minutes with a Vt of 15 ml/kg initiates an injurious process in the preterm lung and a hepatic acute-phase response. Subsequent ventilatory support causes further increases in some injury indicators.