Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
20 result(s) for "Pineau, Béatrice"
Sort by:
Seasonal hydrological and water quality performance of individual and in-series stormwater infrastructures as treatment trains in cold climate
The performance of stormwater treatment trains and of their individual green infrastructures was evaluated near Montreal, Canada. Three treatment trains were studied: Train 1 – five bioretention cells in series with a wet retention pond; Train 2 – an infiltration trench in series with a dry detention pond; and Train 3 – Train 2 in series with a wet retention pond. A total of 47 rain events were monitored to quantity the hydrological performance, while water quality samples were taken during 24 rainfall events. During the summer, the bioretention cells led to a reduction in runoff volumes varying from 8 to 100%. Overall, the three studied treatment trains and all of the individual infrastructures, except for the dry pond, provided reductions in the mean concentrations of total suspended solids, chemical oxygen demand, total nitrogen and total phosphorous. Results also showed that the use of a train of stormwater infrastructures can be more effective to reach Quebec's legislated targets than single infrastructures, but only if the infrastructures are sequenced properly. Indeed, the addition of a dry basin at the end of Train 2 affected negatively the removal efficiency of the four studied contaminants.
The Importance of Cardiolipin Synthase for Mitochondrial Ultrastructure, Respiratory Function, Plant Development, and Stress Responses in Arabidopsis
Cardiolipin (CL) is the signature phospholipid of the mitochondrial inner membrane. In animals and yeast (Saccharomyces cerevisiae), CL depletion affects the stability of respiratory supercomplexes and is thus crucial to the energy metabolism of obligate aerobes. In eukaryotes, the last step of CL synthesis is catalyzed by CARDIOLIPIN SYNTHASE (CLS), encoded by a single-copy gene. Here, we characterize a cls mutant in Arabidopsis thaliana, which is devoid of CL. In contrast to yeast cls, where development is little affected, Arabidopsis cls seedlings are slow developing under short-day conditions in vitro and die if they are transferred to long-day (LD) conditions. However, when transferred to soil under LD conditions under low light, cls plants can reach the flowering stage, but they are not fertile. The cls mitochondria display abnormal ultrastructure and reduced content of respiratory complex I/complex III supercomplexes. The marked accumulation of tricarboxylic acid cycle derivatives and amino acids demonstrates mitochondrial dysfunction. Mitochondrial and chloroplastic antioxidant transcripts are overexpressed in cls leaves, and cls protoplasts are more sensitive to programmed cell death effectors, UV light, and heat shock. Our results show that CLS is crucial for correct mitochondrial function and development in Arabidopsis under both optimal and stress conditions.
Postprandial Endotoxin Transporters LBP and sCD14 Differ in Obese vs. Overweight and Normal Weight Men during Fat-Rich Meal Digestion
Circulating levels of lipopolysaccharide-binding protein (LBP) and soluble cluster of differentiation 14 (sCD14) are recognized as clinical markers of endotoxemia. In obese men, postprandial endotoxemia is modulated by the amount of fat ingested, being higher compared to normal-weight (NW) subjects. Relative variations of LBP/sCD14 ratio in response to overfeeding are also considered important in the inflammation set-up, as measured through IL-6 concentration. We tested the hypothesis that postprandial LBP and sCD14 circulating concentrations differed in obese vs. overweight and NW men after a fat-rich meal. We thus analyzed the postprandial kinetics of LBP and sCD14 in the context of two clinical trials involving postprandial tests in normal-, over-weight and obese men. In the first clinical trial eight NW and 8 obese men ingested breakfasts containing 10 vs. 40 g of fat. In the second clinical trial, 18 healthy men were overfed during 8 weeks. sCD14, LBP and Il-6 were measured in all subjects during 5 h after test meal. Obese men presented a higher fasting and postprandial LBP concentration in plasma than NW men regardless of fat load, while postprandial sCD14 was similar in both groups. Irrespective of the overfeeding treatment, we observed postprandial increase of sCD14 and decrease of LBP before and after OF. In obese individuals receiving a 10 g fat load, whereas IL-6 increased 5h after meal, LBP and sCD14 did not increase. No direct association between the postprandial kinetics of endotoxemia markers sCD14 and LBP and of inflammation in obese men was observed in this study.
Phenotype and genotype for thiopurine methyltransferase activity in the French Caucasian population: impact of age
Thiopurine drugs are commonly used in pediatric patients for the treatment of acute leukemia, organ transplantation and inflammatory diseases. They are catabolized by the cytosolic thiopurine methyltransferase (TPMT), which is subject to a genetic polymorphism. In children, enzyme activities are immature at birth and developmental patterns vary widely from one enzyme to another. The present study was undertaken to evaluate erythrocyte TPMT activity and the correlation between genotype and phenotype in different age groups from birth to adolescence and adulthood. The study included 304 healthy adult blood donors, 147 children and 18 neonates (cord bloods). TPMT activity was measured by liquid chromatography, and genotype was determined using a polymerase chain reaction reverse dot-blot analysis identifying the predominant TPMT mutant alleles (TPMT*3A, TPMT*3B, TPMT*3C, TPMT*2). There was no significant difference in TPMT activity between cord bloods ( n=18) and children ( n=147) (17.48+/-4.04 versus 18.62+/-4.14 respectively, P=0.424). However, TPMT was significantly lower in children than in adults (19.34+/-4.09) ( P=0.033). In the whole population, there were 91.9% homozygous wild type, 7.9% heterozygous mutants and 0.2% homozygous mutants. The frequency of mutant alleles was 3.0% for TPMT*3A, 0.7% for TPMT*2 and 0.4% for TPMT*3C. No impact of child development on TPMT activity could be evidenced, suggesting that TPMT activity is already mature at birth. The difference between children and adults was low with reduced clinical impact expected. When individual TPMT activity was compared with genotype, there was an overlapping region where subjects (4.5%, 12 adults, 9 children) were either homozygous wild type or heterozygous, with a TPMT activity below the antimode value. This result highlighted the importance of measuring TPMT activity to detect all patients at risk of thiopurine toxicity.
RXR activators molecular signalling: involvement of a PPARα‐dependent pathway in the liver and kidney, evidence for an alternative pathway in the heart
In this study we compared the molecular signalling elicited by rexinoids, selective retinoid X receptor (RXR)‐activators, in several organs (i.e. liver, kidney, heart) and in hepatocytes of various species. RXR plays the pivotal role of a hetero‐dimerization partner for the members of the class II subset of nuclear receptors which regulate the transcription of numerous target genes, following chemical activation. Several of these selective activators are currently used to treat hyperlipidaemia (fibrates), type II diabetes (glitazones), or skin disorders (retinoic acid). Although these therapeutic pathways are not fully elucidated, receptor activation is considered a pre‐requisite for efficacy. Therefore RXR, which accepts numerous dimeric partners, is considered a worthwhile pharmacological target. We analysed a number of biochemical and molecular responses to rexinoids which were given orally to mice. Our results showed a prominent involvement of the peroxisome proliferator‐activated receptor (PPARα) as a majority of the observed hepatic and renal regulations were abolished in PPARα‐knockout animals. Therefore we documented the species‐specificity of these rexinoid actions which were reproduced in rat primary hepatocyte cultures but not in cultures of rabbit or human origin. Conversely, we established that the regulation of the pyruvate dehydrogenase kinase (PDK4) gene in the heart, by rexinoids, is independent of PPARα expression. Our results support the obligatory expression of the active, although quiescent, PPARα to sustain a subset of relevant regulations attributable to rexinoids in the liver and kidney. Their cardiac molecular signalling unveiled an alternate transduction pathway and therefore opens new prospects in the therapeutic potential of rexinoids. British Journal of Pharmacology (2003) 138, 845–854. doi:10.1038/sj.bjp.0705113
RXR activators molecular signalling: involvement of a PPARalpha-dependent pathway in the liver and kidney, evidence for an alternative pathway in the heart
(1) In this study we compared the molecular signalling elicited by rexinoids, selective retinoid X receptor (RXR)-activators, in several organs (i.e. liver, kidney, heart) and in hepatocytes of various species. (2) RXR plays the pivotal role of a hetero-dimerization partner for the members of the class II subset of nuclear receptors which regulate the transcription of numerous target genes, following chemical activation. Several of these selective activators are currently used to treat hyperlipidaemia (fibrates), type II diabetes (glitazones), or skin disorders (retinoic acid). Although these therapeutic pathways are not fully elucidated, receptor activation is considered a pre-requisite for efficacy. Therefore RXR, which accepts numerous dimeric partners, is considered a worthwhile pharmacological target. (3) We analysed a number of biochemical and molecular responses to rexinoids which were given orally to mice. Our results showed a prominent involvement of the peroxisome proliferator-activated receptor (PPARalpha) as a majority of the observed hepatic and renal regulations were abolished in PPARalpha-knockout animals. Therefore we documented the species-specificity of these rexinoid actions which were reproduced in rat primary hepatocyte cultures but not in cultures of rabbit or human origin. Conversely, we established that the regulation of the pyruvate dehydrogenase kinase (PDK4) gene in the heart, by rexinoids, is independent of PPARalpha expression. (4) Our results support the obligatory expression of the active, although quiescent, PPARalpha to sustain a subset of relevant regulations attributable to rexinoids in the liver and kidney. Their cardiac molecular signalling unveiled an alternate transduction pathway and therefore opens new prospects in the therapeutic potential of rexinoids.
Transcriptional Modulations by RXR Agonists Are Only Partially Subordinated to PPARα Signaling and Attest Additional, Organ-Specific, Molecular Cross-Talks
Nuclear hormone receptors (NR) are important transcriptional regulators of numerous genes involved in diverse pathophysiological and therapeutic functions. Following ligand activation, class II NR share the ability to heterodimerize with the retinoid X receptor (RXR). It is established that RXR activators, rexinoids, transactivate several peroxisome proliferator-activated receptor α (PPARα) target genes in a PPARα-dependent manner. We hypothesized that, once activated, RXR might signal through quiescent NR other than PPARα, in an organ-specific manner. To study this putative phenomenon in vivo, we developed an array of 120 genes relevant to the class II NR field. The genes were selected using both published data and high-density screenings performed on RXR or PPARα agonist-treated mice. Wild-type C57BL/6J and PPARα-deficient mice were treated with fenofibrate (PPARα activator) or LGD1069 (RXR activator). Using our customized array, we studied the hepatic, cardiac, and renal expression of this panel of 120 genes and compared them in both murine genotypes. The results obtained from this study confirmed the ability of an RXR agonist to modulate PPARα-restricted target genes in the liver and the kidney. Furthermore, we show that various organ-specific regulations occurring in both genotypes (PPARα +/+ or −/−) are highly indicative of the ability of RXR to recruit other class II NR pathways. Further development of this molecular tool may lead to a better understanding of the permissiveness of class II nuclear receptor dimers in vivo.
Transcriptional modulations by RXR agonists are only partially subordinated to PPARalpha signaling and attest additional, organ-specific, molecular cross-talks
Nuclear hormone receptors (NR) are important transcriptional regulators of numerous genes involved in diverse pathophysiological and therapeutic functions. Following ligand activation, class II NR share the ability to heterodimerize with the retinoid X receptor (RXR). It is established that RXR activators, rexinoids, transactivate several peroxisome proliferator-activated receptor alpha (PPARalpha) target genes in a PPARalpha-dependent manner. We hypothesized that, once activated, RXR might signal through quiescent NR other than PPARalpha, in an organ-specific manner. To study this putative phenomenon in vivo, we developed an array of 120 genes relevant to the class II NR field. The genes were selected using both published data and high-density screenings performed on RXR or PPARalpha agonist-treated mice. Wild-type C57BL/6J and PPARalpha-deficient mice were treated with fenofibrate (PPARalpha activator) or LGD1069 (RXR activator). Using our customized array, we studied the hepatic, cardiac, and renal expression of this panel of 120 genes and compared them in both murine genotypes. The results obtained from this study confirmed the ability of an RXR agonist to modulate PPARalpha-restricted target genes in the liver and the kidney. Furthermore, we show that various organ-specific regulations occurring in both genotypes (PPARalpha +/+ or -/-) are highly indicative of the ability of RXR to recruit other class II NR pathways. Further development of this molecular tool may lead to a better understanding of the permissiveness of class II nuclear receptor dimers in vivo.