Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
24 result(s) for "Pirson, Isabelle"
Sort by:
tRNA Methyltransferase Homolog Gene TRMT10A Mutation in Young Onset Diabetes and Primary Microcephaly in Humans
We describe a new syndrome of young onset diabetes, short stature and microcephaly with intellectual disability in a large consanguineous family with three affected children. Linkage analysis and whole exome sequencing were used to identify the causal nonsense mutation, which changed an arginine codon into a stop at position 127 of the tRNA methyltransferase homolog gene TRMT10A (also called RG9MTD2). TRMT10A mRNA and protein were absent in lymphoblasts from the affected siblings. TRMT10A is ubiquitously expressed but enriched in brain and pancreatic islets, consistent with the tissues affected in this syndrome. In situ hybridization studies showed that TRMT10A is expressed in human embryonic and fetal brain. TRMT10A is the mammalian ortholog of S. cerevisiae TRM10, previously shown to catalyze the methylation of guanine 9 (m(1)G9) in several tRNAs. Consistent with this putative function, in silico topology prediction indicated that TRMT10A has predominant nuclear localization, which we experimentally confirmed by immunofluorescence and confocal microscopy. TRMT10A localizes to the nucleolus of β- and non-β-cells, where tRNA modifications occur. TRMT10A silencing induces rat and human β-cell apoptosis. Taken together, we propose that TRMT10A deficiency negatively affects β-cell mass and the pool of neurons in the developing brain. This is the first study describing the impact of TRMT10A deficiency in mammals, highlighting a role in the pathogenesis of microcephaly and early onset diabetes. In light of the recent report that the type 2 diabetes candidate gene CDKAL1 is a tRNA methylthiotransferase, the findings in this family suggest broader relevance of tRNA methyltransferases in the pathogenesis of type 2 diabetes.
Two novel CCDC88C mutations confirm the role of DAPLE in autosomal recessive congenital hydrocephalus
Background Human congenital non-syndromic hydrocephalus is a vastly heterogeneous condition. A subgroup of cases are not secondary to a specific cause (eg, a neural tube defect), and within this subgroup, autosomal recessive inheritance has been described. One homozygous mutation in the DAPLE (Dvl-associating protein with a high frequency of leucine residues) protein-encoding gene CCDC88C (coiled-coil domain containing 88C) has recently been reported in a single family. The role of this gene has not been validated in another family, and no other autosomal recessive gene has been reported. Methods We used homozygosity mapping and whole exome sequencing in two families with primary, non-syndromic congenital hydrocephalus from two different ethnic backgrounds. Results In each family, we identified a novel homozygous mutation of CCDC88C. One mutation produced a premature stop codon at position 312 of the protein, while the second mutation induced a frameshift in the last exon, producing a stop codon that truncated the extreme C-terminus of DAPLE, including the 2026-2028 Gly-Cys-Val motif known to bind the post synaptic density protein (PSD95), Drosophila disc large tumor suppressor (Dlg1), and zonula occludens-1 protein (zo-1) (PDZ) domain of Dishevelled. Conclusions Our data validate CCDC88C as causing autosomal recessive, primary non-syndromic congenital hydrocephalus, suggesting this gene may be an important cause of congenital hydrocephalus, and underscore the important role of the C-terminal PDZ domain-binding motif in the DAPLE protein.
Congenital hydrocephalus: new Mendelian mutations and evidence for oligogenic inheritance
Background Congenital hydrocephalus is characterized by ventriculomegaly, defined as a dilatation of cerebral ventricles, and thought to be due to impaired cerebrospinal fluid (CSF) homeostasis. Primary congenital hydrocephalus is a subset of cases with prenatal onset and absence of another primary cause, e.g., brain hemorrhage. Published series report a Mendelian cause in only a minority of cases. In this study, we analyzed exome data of PCH patients in search of novel causal genes and addressed the possibility of an underlying oligogenic mode of inheritance for PCH. Materials and methods We sequenced the exome in 28 unrelated probands with PCH, 12 of whom from families with at least two affected siblings and 9 of whom consanguineous, thereby increasing the contribution of genetic causes. Patient exome data were first analyzed for rare (MAF < 0.005) transmitted or de novo variants. Population stratification of unrelated PCH patients and controls was determined by principle component analysis, and outliers identified using Mahalanobis distance 5% as cutoff. Patient and control exome data for genes biologically related to cilia (SYScilia database) were analyzed by mutation burden test. Results In 18% of probands, we identify a causal (pathogenic or likely pathogenic) variant of a known hydrocephalus gene, including genes for postnatal, syndromic hydrocephalus, not previously reported in isolated PCH. In a further 11%, we identify mutations in novel candidate genes. Through mutation burden tests, we demonstrate a significant burden of genetic variants in genes coding for proteins of the primary cilium in PCH patients compared to controls. Conclusion Our study confirms the low contribution of Mendelian mutations in PCH and reports PCH as a phenotypic presentation of some known genes known for syndromic, postnatal hydrocephalus. Furthermore, this study identifies novel Mendelian candidate genes, and provides evidence for oligogenic inheritance implicating primary cilia in PCH.
Proximity Interactome Analysis of Super Conserved Receptors Expressed in the Brain Identifies EPB41L2, SLC3A2, and LRBA as Main Partners
The Super-Conserved Receptors Expressed in the Brain (SREBs) form a subfamily of orphan G protein-coupled receptors, highly conserved in evolution and characterized by a predominant expression in the brain. The signaling pathways activated by these receptors (if any) are presently unclear. Given the strong conservation of their intracellular loops, we used a BioID2 proximity-labeling assay to identify protein partners of SREBs that would interact with these conserved domains. Using streptavidin pull-down followed by mass spectrometry analysis, we identified the amino acid transporter SLC3A2, the AKAP protein LRBA, and the 4.1 protein EPB41L2 as potential interactors of these GPCRs. Using co-immunoprecipitation experiments, we confirmed the physical association of these proteins with the receptors. We then studied the functional relevance of the interaction between EPB41L2 and SREB1. Immunofluorescence microscopy revealed that SREB1 and EPB41L2 co-localize at the plasma membrane and that SREB1 is enriched in the β-catenin-positive cell membranes. siRNA knockdown experiments revealed that EPB41L2 promotes the localization of SREB1 at the plasma membrane and increases the solubilization of SREB1 when using detergents, suggesting a modification of its membrane microenvironment. Altogether, these data suggest that EPB41L2 could regulate the subcellular compartmentalization of SREBs and, as proposed for other GPCRs, could affect their stability or activation.
Homologous Transcription Factors DUX4 and DUX4c Associate with Cytoplasmic Proteins during Muscle Differentiation
Hundreds of double homeobox (DUX) genes map within 3.3-kb repeated elements dispersed in the human genome and encode DNA-binding proteins. Among these, we identified DUX4, a potent transcription factor that causes facioscapulohumeral muscular dystrophy (FSHD). In the present study, we performed yeast two-hybrid screens and protein co-purifications with HaloTag-DUX fusions or GST-DUX4 pull-down to identify protein partners of DUX4, DUX4c (which is identical to DUX4 except for the end of the carboxyl terminal domain) and DUX1 (which is limited to the double homeodomain). Unexpectedly, we identified and validated (by co-immunoprecipitation, GST pull-down, co-immunofluorescence and in situ Proximal Ligation Assay) the interaction of DUX4, DUX4c and DUX1 with type III intermediate filament protein desmin in the cytoplasm and at the nuclear periphery. Desmin filaments link adjacent sarcomere at the Z-discs, connect them to sarcolemma proteins and interact with mitochondria. These intermediate filament also contact the nuclear lamina and contribute to positioning of the nuclei. Another Z-disc protein, LMCD1 that contains a LIM domain was also validated as a DUX4 partner. The functionality of DUX4 or DUX4c interactions with cytoplasmic proteins is underscored by the cytoplasmic detection of DUX4/DUX4c upon myoblast fusion. In addition, we identified and validated (by co-immunoprecipitation, co-immunofluorescence and in situ Proximal Ligation Assay) as DUX4/4c partners several RNA-binding proteins such as C1QBP, SRSF9, RBM3, FUS/TLS and SFPQ that are involved in mRNA splicing and translation. FUS and SFPQ are nuclear proteins, however their cytoplasmic translocation was reported in neuronal cells where they associated with ribonucleoparticles (RNPs). Several other validated or identified DUX4/DUX4c partners are also contained in mRNP granules, and the co-localizations with cytoplasmic DAPI-positive spots is in keeping with such an association. Large muscle RNPs were recently shown to exit the nucleus via a novel mechanism of nuclear envelope budding. Following DUX4 or DUX4c overexpression in muscle cell cultures, we observed their association with similar nuclear buds. In conclusion, our study demonstrated unexpected interactions of DUX4/4c with cytoplasmic proteins playing major roles during muscle differentiation. Further investigations are on-going to evaluate whether these interactions play roles during muscle regeneration as previously suggested for DUX4c.
Severe congenital microcephaly with AP4M1 mutation, a case report
Background Autosomal recessive defects of either the B1, E1, M1 or S1 subunit of the Adaptor Protein complex-4 (AP4) are characterized by developmental delay, severe intellectual disability, spasticity, and occasionally mild to moderate microcephaly of essentially postnatal onset. Case presentation We report on a patient with severe microcephaly of prenatal onset, and progressive spasticity, developmental delay, and severe intellectual deficiency. Exome sequencing showed a homozygous mutation in AP4M1 , causing the replacement of an arginine by a stop codon at position 338 of the protein (p.Arg338X). The premature stop codon truncates the Mu homology domain of AP4M1, with predicted loss of function. Exome analysis also showed heterozygous variants in three genes, ATR, MCPH1 and BLM , which are known causes of autosomal recessive primary microcephaly. Conclusions Our findings expand the AP4M1 phenotype to severe microcephaly of prenatal onset, and more generally suggest that the AP4 defect might share mechanisms of prenatal neuronal depletion with other genetic defects of brain development causing congenital, primary microcephaly.
Progressive Myoclonic Epilepsy-Associated Gene KCTD7 is a Regulator of Potassium Conductance in Neurons
The potassium channel tetramerization domain-containing protein 7 (KCTD7) was named after the structural homology of its predicted N-terminal broad complex, tramtrack and bric à brac/poxvirus and zinc finger domain with the T1 domain of the Kv potassium channel, but its expression profile and cellular function are still largely unknown. We have recently reported a homozygous nonsense mutation of KCTD7 in patients with a novel form of autosomal recessive progressive myoclonic epilepsy. Here, we show that KCTD7 expression hyperpolarizes the cell membrane and reduces the excitability of transfected neurons in patch clamp experiments. We found the expression of KCTD7 in the hippocampal and Purkinje cells of the murine brain, an expression profile consistent with our patients’ phenotype. The effect on the plasma membrane resting potential is possibly mediated by Cullin-3, as we demonstrated direct molecular interaction of KCTD7 with Cullin-3 in co-immunoprecipitation assays. Our data link progressive myoclonic epilepsy to an inherited defect of the neuron plasma membrane’s resting potential in the brain.
Phenotypes and genotypes in non‐consanguineous and consanguineous primary microcephaly: High incidence of epilepsy
Background Primary microcephaly (PM) is defined as a significant reduction in occipitofrontal circumference (OFC) of prenatal onset. Clinical and genetic heterogeneity of PM represents a diagnostic challenge. Methods We performed detailed phenotypic and genomic analyses in a large cohort (n = 169) of patients referred for PM and could establish a molecular diagnosis in 38 patients. Results Pathogenic variants in ASPM and WDR62 were the most frequent causes in non‐consanguineous patients in our cohort. In consanguineous patients, microarray and targeted gene panel analyses reached a diagnostic yield of 67%, which contrasts with a much lower rate in non‐consanguineous patients (9%). Our series includes 11 novel pathogenic variants and we identify novel candidate genes including IGF2BP3 and DNAH2. We confirm the progression of microcephaly over time in affected children. Epilepsy was an important associated feature in our PM cohort, affecting 34% of patients with a molecular confirmation of the PM diagnosis, with various degrees of severity and seizure types. Conclusion Our findings will help to prioritize genomic investigations, accelerate molecular diagnoses, and improve the management of PM patients. Phenotyping and genetic analyses in 169 probands referred for primary microcephaly produced a molecular diagnosis in 38, with ASPM and WDR62 most prevalent in non‐consanguineous patients, and a total diagnostics rate of 67% in consanguineous patients. Our series includes 11 novel pathogenic variants and reveals epilepsy as a more frequent feature than previously reported.
An exome-wide study of renal operational tolerance
Renal operational tolerance is a rare and beneficial state of prolonged renal allograft function in the absence of immunosuppression. The underlying mechanisms are unknown. We hypothesized that tolerance might be driven by inherited protein coding genetic variants with large effect, at least in some patients. We set up a European survey of over 218,000 renal transplant recipients and collected DNAs from 40 transplant recipients who maintained good allograft function without immunosuppression for at least 1 year. We performed an exome-wide association study comparing the distribution of moderate to high impact variants in 36 tolerant patients, selected for genetic homogeneity using principal component analysis, and 192 controls, using an optimal sequence-kernel association test adjusted for small samples. We identified rare variants of (3/36, FDR 0.0387), (5/36, FDR 0.0362), and (3/36, FDR 0.102) in 10 tolerant patients . 0 controls. One patient carried a variant in both and . Furthermore, the three genes showed an identical variant in two patients each. The three genes are expressed at the primary cilium, a key structure in immune responses. Rare protein coding variants are associated with operational tolerance in a sizable portion of patients. Our findings have important implications for a better understanding of immune tolerance in transplantation and other fields of medicine.ClinicalTrials.gov, identifier: NCT05124444.
Phenotypic spectrum associated with a CRADD founder variant underlying frontotemporal predominant pachygyria in the Finnish population
Intellectual disability (ID), megalencephaly, frontal predominant pachygyria, and seizures, previously called “thin” lissencephaly, are reported to be caused by recessive variants in CRADD. Among five families of different ethnicities identified, one homozygous missense variant, c.509G>A p.(Arg170His), was of Finnish ancestry. Here we report on the phenotypic variability associated for this potential CRADD founder variant in 22 Finnish individuals. Exome sequencing was used to identify candidate genes in Finnish patients presenting with ID. Targeted Sanger sequencing and restriction enzyme analysis were applied to screen for the c.509G>A CRADD variant in cohorts from Finland. Detailed phenotyping and genealogical studies were performed. Twenty two patients were identified with the c.509G>A p.(Arg170His) homozygous variant in CRADD. The majority of the ancestors originated from Northeastern Finland indicating a founder effect. The hallmark of the disease is frontotemporal predominant pachygyria with mild cortical thickening. All patients show ID of variable severity. Aggressive behavior was found in nearly half of the patients, EEG abnormalities in five patients and megalencephaly in three patients. This study provides detailed data about the phenotypic spectrum of patients with lissencephaly due to a CRADD variant that affects function. High inter- and intrafamilial phenotypic heterogeneity was identified in patients with pachygyria caused by the homozygous CRADD founder variant. The phenotype variability suggests that additional genetic and/or environmental factors play a role in the clinical presentation. Since frontotemporal pachygyria is the hallmark of the disease, brain imaging studies are essential to support the molecular diagnosis for individuals with ID and a CRADD variant.