Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
77
result(s) for
"Pisano, David G."
Sort by:
Distinct DNA methylomes of newborns and centenarians
2012
Human aging cannot be fully understood in terms of the constrained genetic setting. Epigenetic drift is an alternative means of explaining age-associated alterations. To address this issue, we performed whole-genome bisulfite sequencing (WGBS) of newborn and centenarian genomes. The centenarian DNA had a lower DNA methylation content and a reduced correlation in the methylation status of neighboring cytosine—phosphate—guanine (CpGs) throughout the genome in comparison with the more homogeneously methylated newborn DNA. The more hypomethylated CpGs observed in the centenarian DNA compared with the neonate covered all genomic compartments, such as promoters, exonic, intronic, and intergenic regions. For regulatory regions, the most hypomethylated sequences in the centenarian DNA were present mainly at CpG-poor promoters and in tissue-specific genes, whereas a greater level of DNA methylation was observed in CpG island promoters. We extended the study to a larger cohort of newborn and nonagenarian samples using a 450,000 CpG-site DNA methylation microarray that reinforced the observation of more hypomethylated DNA sequences in the advanced age group. WGBS and 450,000 analyses of middle-age individuals demonstrated DNA methylomes in the crossroad between the newborn and the nonagenarian/centenarian groups. Our study constitutes a unique DNA methylation analysis of the extreme points of human life at a single-nucleotide resolution level.
Journal Article
Mammalian Rap1 controls telomere function and gene expression through binding to telomeric and extratelomeric sites
by
Thanasoula, Maria
,
Carlos, Ana R.
,
Gómez-López, Gonzalo
in
631/208/200
,
631/80/103/560
,
Animals
2010
The shelterin complex binds and protects mammalian telomeres. The shelterin component, Rap1, binds to non-telomeric regions and has extra-telomeric functions in transcriptional gene regulation.
Rap1 is a component of the shelterin complex at mammalian telomeres, but its
in vivo
role in telomere biology has remained largely unknown to date. Here we show that
Rap1
deficiency is dispensable for telomere capping but leads to increased telomere recombination and fragility. We generated cells and mice deleted for Rap1; mice with
Rap1
deletion in stratified epithelia were viable but had shorter telomeres and developed skin hyperpigmentation in adulthood. By performing chromatin immunoprecipitation coupled with ultrahigh-throughput sequencing, we found that Rap1 binds to both telomeres and to extratelomeric sites through the (TTAGGG)
2
consensus motif. Extratelomeric Rap1-binding sites were enriched at subtelomeric regions, in agreement with preferential deregulation of subtelomeric genes in
Rap1
-deficient cells. More than 70% of extratelomeric Rap1-binding sites were in the vicinity of genes, and 31% of the genes deregulated in
Rap1
-null cells contained Rap1-binding sites, suggesting a role for Rap1 in transcriptional control. These findings place a telomere protein at the interface between telomere function and transcriptional regulation.
Journal Article
Identification of TERRA locus unveils a telomere protection role through association to nearly all chromosomes
2014
Telomeric RNAs (TERRAs) are UUAGGG repeat-containing RNAs that are transcribed from the subtelomere towards the telomere. The precise genomic origin of TERRA has remained elusive. Using a whole-genome RNA-sequencing approach, we identify novel mouse transcripts arising mainly from the subtelomere of chromosome 18, and to a lesser extend chromosome 9, that resemble TERRA in several key aspects. Those transcripts contain UUAGGG-repeats and are heterogeneous in size, fluctuate in abundance in a TERRA-like manner during the cell cycle, are bound by TERRA RNA-binding proteins and are regulated in a manner similar to TERRA in response to stress and the induction of pluripotency. These transcripts are also found to associate with nearly all chromosome ends and downregulation of the transcripts that originate from chromosome 18 causes a reduction in TERRA abundance. Interestingly, downregulation of either chromosome 18 transcripts or TERRA results in increased number of telomere dysfunction-induced foci, suggesting a protective role at telomeres.
Telomeric RNAs (TERRAs) are known to be transcribed towards the telomere from subtelomeric regions, however, their precise genomic origins are unclear. Here López de Silanes
et al.
identify novel transcripts that originate from the subtelomeric region of mouse chromosome 18 and behave as bona fide TERRAs.
Journal Article
NSD2 contributes to oncogenic RAS-driven transcription in lung cancer cells through long-range epigenetic activation
2016
The histone methyltransferase NSD2/WHSC1/MMSET is overexpressed in a number of solid tumors but its contribution to the biology of these tumors is not well understood. Here, we describe that NSD2 contributes to the proliferation of a subset of lung cancer cell lines by supporting oncogenic RAS transcriptional responses. NSD2 knock down combined with MEK or BRD4 inhibitors causes co-operative inhibitory responses on cell growth. However, while MEK and BRD4 inhibitors converge in the downregulation of genes associated with cancer-acquired super-enhancers, NSD2 inhibition affects the expression of clusters of genes embedded in megabase-scale regions marked with H3K36me2 and that contribute to the RAS transcription program. Thus, combinatorial therapies using MEK or BRD4 inhibitors together with NSD2 inhibition are likely to be needed to ensure a more comprehensive inhibition of oncogenic RAS-driven transcription programs in lung cancers with NSD2 overexpression.
Journal Article
A genetic interaction between RAP1 and telomerase reveals an unanticipated role for RAP1 in telomere maintenance
by
Flores, Juana M
,
Martinez, Paula
,
Pisano, David G
in
Chromosomes
,
Gene expression
,
Telomerase
2016
Summary RAP1 is one of the components of shelterin, the capping complex at chromosome ends or telomeres, although its role in telomere length maintenance and protection has remained elusive. RAP1 also binds subtelomeric repeats and along chromosome arms, where it regulates gene expression and has been shown to function in metabolism control. Telomerase is the enzyme that elongates telomeres, and its deficiency causes a premature aging in humans and mice. We describe an unanticipated genetic interaction between RAP1 and telomerase. While RAP1 deficiency alone does not impact on mouse survival, mice lacking both RAP1 and telomerase show a progressively decreased survival with increasing mouse generations compared to telomerase single mutants. Telomere shortening is more pronounced in Rap1-/- Terc-/- doubly deficient mice than in the single-mutant Terc-/- counterparts, leading to an earlier onset of telomere-induced DNA damage and degenerative pathologies. Telomerase deficiency abolishes obesity and liver steatohepatitis provoked by RAP1 deficiency. Using genomewide ChIP sequencing, we find that progressive telomere shortening owing to telomerase deficiency leads to re-localization of RAP1 from telomeres and subtelomeric regions to extratelomeric sites in a genomewide manner. These findings suggest that although in the presence of sufficient telomere reserve RAP1 is not a key factor for telomere maintenance and protection, it plays a crucial role in the context of telomerase deficiency, thus in agreement with its evolutionary conservation as a telomere component from yeast to humans.
Journal Article
CREBBP/EP300 bromodomains are critical to sustain the GATA1/MYC regulatory axis in proliferation
by
Ruiz-Llorente, Sergio
,
Graña-Castro, Osvaldo
,
Garcia-Carpizo, Veronica
in
Acetylation
,
Animal Genetics and Genomics
,
Antitumor activity
2018
Background
The reported antitumor activity of the BET family bromodomain inhibitors has prompted the development of inhibitors against other bromodomains. However, the human genome encodes more than 60 different bromodomains and most of them remain unexplored.
Results
We report that the bromodomains of the histone acetyltransferases CREBBP/EP300 are critical to sustain the proliferation of human leukemia and lymphoma cell lines. EP300 is very abundant at super-enhancers in K562 and is coincident with sites of GATA1 and MYC occupancy. In accordance, CREBBP/EP300 bromodomain inhibitors interfere with GATA1- and MYC-driven transcription, causing the accumulation of cells in the G0/G1 phase of the cell cycle. The CREBBP/CBP30 bromodomain inhibitor CBP30 displaces CREBBP and EP300 from GATA1 and MYC binding sites at enhancers, resulting in a decrease in the levels of histone acetylation at these regulatory regions and consequently reduced gene expression of critical genes controlled by these transcription factors.
Conclusions
Our data shows that inhibition of CREBBP/EP300 bromodomains can interfere with oncogene-driven transcriptional programs in cancer cells and consequently hold therapeutic potential.
Journal Article
ARID1A Alterations Are Associated with FGFR3-Wild Type, Poor-Prognosis, Urothelial Bladder Tumors
2013
Urothelial bladder cancer (UBC) is heterogeneous at the clinical, pathological, genetic, and epigenetic levels. Exome sequencing has identified ARID1A as a novel tumor suppressor gene coding for a chromatin remodeling protein that is mutated in UBC. Here, we assess ARID1A alterations in two series of patients with UBC. In the first tumor series, we analyze exons 2-20 in 52 primary UBC and find that all mutant tumors belong to the aggressive UBC phenotype (high grade non-muscle invasive and muscle invasive tumors) (P = 0.05). In a second series (n = 84), we assess ARID1A expression using immunohistochemistry, a surrogate for mutation analysis, and find that loss of expression increases with higher stage/grade, it is inversely associated with FGFR3 overexpression (P = 0.03) but it is not correlated with p53 overexpression (P = 0.30). We also analyzed the expression of cytokeratins in the same set of tumor and find, using unsupervised clustering, that tumors with ARID1A loss of expression are generally KRT5/6-low. In this patient series, loss of ARID1A expression is also associated with worse prognosis, likely reflecting the higher prevalence of losses found in tumors of higher stage and grade. The independent findings in these two sets of patients strongly support the notion that ARID1A inactivation is a key player in bladder carcinogenesis occurring predominantly in FGFR3 wild type tumors.
Journal Article
Analysis of Paired Primary-Metastatic Hormone-Receptor Positive Breast Tumors (HRPBC) Uncovers Potential Novel Drivers of Hormonal Resistance
by
Quintela-Fandino, Miguel
,
Manso, Luis
,
Ciruelos, Eva
in
Alterations
,
Analysis
,
Antineoplastic Agents, Hormonal - therapeutic use
2016
We sought to identify genetic variants associated with disease relapse and failure to hormonal treatment in hormone-receptor positive breast cancer (HRPBC). We analyzed a series of HRPBC with distant relapse, by sequencing pairs (n = 11) of tumors (primary and metastases) at >800X. Comparative genomic hybridization was performed as well. Top hits, based on the frequency of alteration and severity of the changes, were tested in the TCGA series. Genes determining the most parsimonious prognostic signature were studied for their functional role in vitro, by performing cell growth assays in hormonal-deprivation conditions, a setting that mimics treatment with aromatase inhibitors. Severe alterations were recurrently found in 18 genes in the pairs. However, only MYC, DNAH5, CSFR1, EPHA7, ARID1B, and KMT2C preserved an independent prognosis impact and/or showed a significantly different incidence of alterations between relapsed and non-relapsed cases in the TCGA series. The signature composed of MYC, KMT2C, and EPHA7 best discriminated the clinical course, (overall survival 90,7 vs. 144,5 months; p = 0.0001). Having an alteration in any of the genes of the signature implied a hazard ratio of death of 3.25 (p<0.0001), and early relapse during the adjuvant hormonal treatment. The presence of the D348N mutation in KMT2C and/or the T666I mutation in the kinase domain of EPHA7 conferred hormonal resistance in vitro. Novel inactivating mutations in KMT2C and EPHA7, which confer hormonal resistance, are linked to adverse clinical course in HRPBC.
Journal Article
New Mutations in Chronic Lymphocytic Leukemia Identified by Target Enrichment and Deep Sequencing
by
Herreros, Beatriz
,
Gómez-Lozano, Natalia
,
García-Marco, José A.
in
Activation
,
Antigens
,
B-cell receptor
2012
Chronic lymphocytic leukemia (CLL) is a heterogeneous disease without a well-defined genetic alteration responsible for the onset of the disease. Several lines of evidence coincide in identifying stimulatory and growth signals delivered by B-cell receptor (BCR), and co-receptors together with NFkB pathway, as being the driving force in B-cell survival in CLL. However, the molecular mechanism responsible for this activation has not been identified. Based on the hypothesis that BCR activation may depend on somatic mutations of the BCR and related pathways we have performed a complete mutational screening of 301 selected genes associated with BCR signaling and related pathways using massive parallel sequencing technology in 10 CLL cases. Four mutated genes in coding regions (KRAS, SMARCA2, NFKBIE and PRKD3) have been confirmed by capillary sequencing. In conclusion, this study identifies new genes mutated in CLL, all of them in cases with progressive disease, and demonstrates that next-generation sequencing technologies applied to selected genes or pathways of interest are powerful tools for identifying novel mutational changes.
Journal Article