Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
135 result(s) for "Platt, John C."
Sort by:
A scalable system to measure contrail formation on a per-flight basis
Persistent contrails make up a large fraction of aviation's contribution to global warming. We describe a scalable, automated detection and matching (ADM) system to determine from satellite data whether a flight has made a persistent contrail. The ADM system compares flight segments to contrails detected by a computer vision algorithm running on images from the GOES-16 Advanced Baseline Imager. We develop a flight matching algorithm and use it to label each flight segment as a match or non-match. We perform this analysis on 1.6 million flight segments. The result is an analysis of which flights make persistent contrails several orders of magnitude larger than any previous work. We assess the agreement between our labels and available prediction models based on weather forecasts. Shifting air traffic to avoid regions of contrail formation has been proposed as a possible mitigation with the potential for very low cost/ton-CO2e. Our findings suggest that imperfections in these prediction models increase this cost/ton by about an order of magnitude. Contrail avoidance is a cost-effective climate change mitigation even with this factor taken into account, but our results quantify the need for more accurate contrail prediction methods and establish a benchmark for future development.
The effect of uncertainty in humidity and model parameters on the prediction of contrail energy forcing
Previous work has shown that while the net effect of aircraft condensation trails (contrails) on the climate is warming, the exact magnitude of the energy forcing per meter of contrail remains uncertain. In this paper, we explore the skill of a Lagrangian contrail model (CoCiP) in identifying flight segments with high contrail energy forcing. We find that skill is greater than climatological predictions alone, even accounting for uncertainty in weather fields and model parameters. We estimate the uncertainty due to humidity by using the ensemble ERA5 weather reanalysis from the European Centre for Medium-Range Weather Forecasts (ECMWF) as Monte Carlo inputs to CoCiP. We unbias and correct under-dispersion on the ERA5 humidity data by forcing a match to the distribution of in situ humidity measurements taken at cruising altitude. We take CoCiP energy forcing estimates calculated using one of the ensemble members as a proxy for ground truth, and report the skill of CoCiP in identifying segments with large positive proxy energy forcing. We further estimate the uncertainty due to model parameters in CoCiP by performing Monte Carlo simulations with CoCiP model parameters drawn from uncertainty distributions consistent with the literature. When CoCiP outputs are averaged over seasons to form climatological predictions, the skill in predicting the proxy is 44%, while the skill of per-flight CoCiP outputs is 84%. If these results carry over to the true (unknown) contrail EF, they indicate that per-flight energy forcing predictions can reduce the number of potential contrail avoidance route adjustments by 2x, hence reducing both the cost and fuel impact of contrail avoidance.
Feasibility test of per-flight contrail avoidance in commercial aviation
Contrails, formed by aircraft engines, are a major component of aviation’s impact on anthropogenic climate change. Contrail avoidance is a potential option to mitigate this warming effect, however, uncertainties surrounding operational constraints and accurate formation prediction make it unclear whether it is feasible. Here we address this gap with a feasibility test through a randomized controlled trial of contrail avoidance in commercial aviation at the per-flight level. Predictions for regions prone to contrail formation came from a physics-based simulation model and a machine learning model. Participating pilots made altitude adjustments based on contrail formation predictions for flights assigned to the treatment group. Using satellite-based imagery we observed 64% fewer contrails in these flights relative to the control group flights, a statistically significant reduction (p = 0.0331). Our targeted per-flight intervention allowed the airline to track their expected vs actual fuel usage, we found that there is a 2% increase in fuel per adjusted flight. This study demonstrates that per-flight detectable contrail avoidance is feasible in commercial aviation. Vapour trails (contrails) from aircraft make a substantial contribution to aviation’s climate impact. Here we execute a per-flight contrail avoidance feasibility test through altitude adjustments based on contrail formation predictions. The avoidance regime resulted in a 64% reduction in satellite-visible contrails at a 2% increase in fuel burn per adjusted flight.
Quantum supremacy using a programmable superconducting processor
The promise of quantum computers is that certain computational tasks might be executed exponentially faster on a quantum processor than on a classical processor 1 . A fundamental challenge is to build a high-fidelity processor capable of running quantum algorithms in an exponentially large computational space. Here we report the use of a processor with programmable superconducting qubits 2 – 7 to create quantum states on 53 qubits, corresponding to a computational state-space of dimension 2 53 (about 10 16 ). Measurements from repeated experiments sample the resulting probability distribution, which we verify using classical simulations. Our Sycamore processor takes about 200 seconds to sample one instance of a quantum circuit a million times—our benchmarks currently indicate that the equivalent task for a state-of-the-art classical supercomputer would take approximately 10,000 years. This dramatic increase in speed compared to all known classical algorithms is an experimental realization of quantum supremacy 8 – 14 for this specific computational task, heralding a much-anticipated computing paradigm. Quantum supremacy is demonstrated using a programmable superconducting processor known as Sycamore, taking approximately 200 seconds to sample one instance of a quantum circuit a million times, which would take a state-of-the-art supercomputer around ten thousand years to compute.
Living-Off-The-Land Command Detection Using Active Learning
In recent years, enterprises have been targeted by advanced adversaries who leverage creative ways to infiltrate their systems and move laterally to gain access to critical data. One increasingly common evasive method is to hide the malicious activity behind a benign program by using tools that are already installed on user computers. These programs are usually part of the operating system distribution or another user-installed binary, therefore this type of attack is called \"Living-Off-The-Land\". Detecting these attacks is challenging, as adversaries may not create malicious files on the victim computers and anti-virus scans fail to detect them. We propose the design of an Active Learning framework called LOLAL for detecting Living-Off-the-Land attacks that iteratively selects a set of uncertain and anomalous samples for labeling by a human analyst. LOLAL is specifically designed to work well when a limited number of labeled samples are available for training machine learning models to detect attacks. We investigate methods to represent command-line text using word-embedding techniques, and design ensemble boosting classifiers to distinguish malicious and benign samples based on the embedding representation. We leverage a large, anonymized dataset collected by an endpoint security product and demonstrate that our ensemble classifiers achieve an average F1 score of 0.96 at classifying different attack classes. We show that our active learning method consistently improves the classifier performance, as more training data is labeled, and converges in less than 30 iterations when starting with a small number of labeled instances.
A scalable system to measure contrail formation on a per-flight basis
Persistent contrails make up a large fraction of aviation's contribution to global warming. We describe a scalable, automated detection and matching (ADM) system to determine from satellite data whether a flight has made a persistent contrail. The ADM system compares flight segments to contrails detected by a computer vision algorithm running on images from the GOES-16 Advanced Baseline Imager. We develop a 'flight matching' algorithm and use it to label each flight segment as a 'match' or 'non-match'. We perform this analysis on 1.6 million flight segments. The result is an analysis of which flights make persistent contrails several orders of magnitude larger than any previous work. We assess the agreement between our labels and available prediction models based on weather forecasts. Shifting air traffic to avoid regions of contrail formation has been proposed as a possible mitigation with the potential for very low cost/ton-CO2e. Our findings suggest that imperfections in these prediction models increase this cost/ton by about an order of magnitude. Contrail avoidance is a cost-effective climate change mitigation even with this factor taken into account, but our results quantify the need for more accurate contrail prediction methods and establish a benchmark for future development.
Efficient approximation of experimental Gaussian boson sampling
Two recent landmark experiments have performed Gaussian boson sampling (GBS) with a non-programmable linear interferometer and threshold detectors on up to 144 output modes (see Refs.~\\onlinecite{zhong_quantum_2020,zhong2021phase}). Here we give classical sampling algorithms with better total variation distance and Kullback-Leibler divergence than these experiments and a computational cost quadratic in the number of modes. Our method samples from a distribution that approximates the single-mode and two-mode ideal marginals of the given Gaussian boson sampler, which are calculated efficiently. One implementation sets the parameters of a Boltzmann machine from the calculated marginals using a mean field solution. This is a 2nd order approximation, with the uniform and thermal approximations corresponding to the 0th and 1st order, respectively. The \\(k\\)th order approximation reproduces Ursell functions (also known as connected correlations) up to order \\(k\\) with a cost exponential in \\(k\\) and high precision, while the experiment exhibits higher order Ursell functions with lower precision. This methodology, like other polynomial approximations introduced previously, does not apply to random circuit sampling because the \\(k\\)th order approximation would simply result in the uniform distribution, in contrast to GBS.
Supplementary information for \Quantum supremacy using a programmable superconducting processor\
This is an updated version of supplementary information to accompany \"Quantum supremacy using a programmable superconducting processor\", an article published in the October 24, 2019 issue of Nature. The main article is freely available at https://www.nature.com/articles/s41586-019-1666-5. Summary of changes since arXiv:1910.11333v1 (submitted 23 Oct 2019): added URL for qFlex source code; added Erratum section; added Figure S41 comparing statistical and total uncertainty for log and linear XEB; new References [1,65]; miscellaneous updates for clarity and style consistency; miscellaneous typographical and formatting corrections.