Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
7
result(s) for
"Pleticha, Josef"
Sort by:
Preclinical Toxicity Evaluation of AAV for Pain: Evidence from Human AAV Studies and from the Pharmacology of Analgesic Drugs
by
Heilmann, Lukas F
,
Asokan, Aravind
,
Beutler, Andreas S
in
Adeno-associated virus
,
Analgesics
,
Analgesics - therapeutic use
2014
Gene therapy with adeno-associated virus (AAV) has advanced in the last few years from promising results in animal models to >100 clinical trials (reported or under way). While vector availability was a substantial hurdle a decade ago, innovative new production methods now routinely match the scale of AAV doses required for clinical testing. These advances may become relevant to translational research in the chronic pain field. AAV for pain targeting the peripheral nervous system was proven to be efficacious in rodent models several years ago, but has not yet been tested in humans. The present review addresses the steps needed for translation of AAV for pain from the bench to the bedside focusing on pre-clinical toxicology. We break the potential toxicities into three conceptual categories of risk: First, risks related to the delivery procedure used to administer the vector. Second, risks related to AAV biology, i.e., effects of the vector itself that may occur independently of the transgene. Third, risks related to the effects of the therapeutic transgene. To identify potential toxicities, we consulted the existing evidence from AAV gene therapy for other nervous system disorders (animal toxicology and human studies) and from the clinical pharmacology of conventional analgesic drugs. Thereby, we identified required preclinical studies and charted a hypothetical path towards a future phase I/II clinical trial in the oncology-palliative care setting.
Journal Article
Future Directions in Pain Management
2016
Treatment for chronic, locoregional pain ranks among the most prevalent unmet medical needs. The failure of systemic analgesic drugs, such as opioids, is often due to their off-target toxicity, development of tolerance, and abuse potential. Interventional pain procedures provide target specificity but lack pharmacologically selective agents with long-term efficacy. Gene therapy vectors are a new tool for the development of molecularly selective pain therapies, which have already been proved to provide durable analgesia in preclinical models. Taken together, advances in image-guided delivery and gene therapy may lead to a new class of dual selective analgesic treatments integrating the molecular selectivity of analgesic genes with the anatomic selectivity of interventional delivery techniques.
Journal Article
Caffeine supplementation as part of enhanced recovery after surgery pathways: a narrative review of the evidence and knowledge gaps
2021
Caffeine is used daily by 85% of United States adults and caffeine withdrawal is a major cause of perioperative headache. Studies have shown that caffeine supplementation in chronic caffeinators reduces the incidence of perioperative headache. This narrative review discusses the perioperative implications of caffeine withdrawal and outlines the benefits of and strategies of caffeine supplementation in the perioperative period. It is time to “wake up and smell the coffee” on integration of caffeine into established enhanced recovery after surgery protocols as a mechanism to consistently provide perioperative caffeine replacement.
Journal Article
Future Directions in Pain Management: Integrating Anatomically Selective Delivery Techniques With Novel Molecularly Selective Agents
by
Beutler, Andreas S
,
Maus, Timothy P
,
Pleticha, Josef
in
Analgesics - therapeutic use
,
Analgesics, Opioid - administration & dosage
,
Analysis
2016
Treatment for chronic, locoregional pain ranks among the most prevalent unmet medical needs. The failure of systemic analgesic drugs, such as opioids, is often due to their off-target toxicity, development of tolerance, and abuse potential. Interventional pain procedures provide target specificity but lack pharmacologically selective agents with long-term efficacy. Gene therapy vectors are a new tool for the development of molecularly selective pain therapies, which have already been proved to provide durable analgesia in preclinical models. Taken together, advances in image-guided delivery and gene therapy may lead to a new class of dual selective analgesic treatments integrating the molecular selectivity of analgesic genes with the anatomic selectivity of interventional delivery techniques.
Journal Article
Unilateral Epidural Targeting of Resiniferatoxin Induces Bilateral Neurolysis of Spinal Nociceptive Afferents
by
Kanwar, Rahul
,
Maus, Timothy P
,
Steinauer, Joanne
in
Ablation
,
Agonists (Biochemistry)
,
Anatomy
2019
Abstract
Objective
This study modeled image-guided epidural drug delivery to test whether intraprocedural distribution of pre-injected contrast reliably predicts the neuroanatomical reach of resiniferatoxin-mediated nociceptive neurolysis.
Methods
Swine (N = 12) received unilateral L4-S2 computed tomography fluoroscopy injections by a blinded neuroradiologist; 0.25 mL of contrast was pre-injected to confirm dorsal periganglionic targeting, followed by a 0.5-mL injection of 5 µg of resiniferatoxin/Tween80 or vehicle control. Epidural contrast distribution was graded according to maximum medial excursion. Spinal cord substance P immunostaining quantified the magnitude and anatomical range of resiniferatoxin activity.
Results
Periganglionic injection was well tolerated by all animals without development of neurological deficits or other complications. Swine were a suitable model of human clinical spinal intervention. The transforaminal approach was used at all L4 and 50% of L5 segments; the remaining segments were approached by the interlaminar route. All injections were successful with unilateral contrast distribution for all resiniferatoxin injections (N = 28). Immunohistochemistry showed bilateral ablation of substance P+ fibers entering the spinal cord of all resiniferatoxin-treated segments. The intensity of substance P immunostaining in treated segments fell below the lower 99% confidence interval of controls, defining the knockout phenotype. Substance P knockout occurred over a narrow range and was uncorrelated to the anatomical distribution of pre-injected contrast.
Conclusions
Periganglionic resiniferatoxin/Tween80 induced bilateral ablation of spinal cord substance P despite exclusively unilateral targeting. These data suggest that the location of pre-injected contrast is an imperfect surrogate for the neuroanatomical range of drugs delivered to the dorsal epidural compartment that may fail to predict contralateral drug effects.
Journal Article
High cerebrospinal fluid levels of interleukin-10 attained by AAV in dogs
2015
Intrathecal (IT) gene transfer using adeno-associated virus (AAV) may be clinically promising as a treatment for chronic pain if it can produce sufficiently high levels of a transgene product in the cerebrospinal fluid (CSF). Although this strategy was developed in rodents, no studies investigating CSF levels of an analgesic or antiallodynic protein delivered by IT AAV have been performed in large animals. Interleukin-10 (IL-10) is an antiallodynic cytokine for which target therapeutic levels have been established in rats. The present study tested IT AAV8 encoding either human IL-10 (hIL-10) or enhanced green fluorescent protein (EGFP) in a dog model of IT drug delivery. AAV8/hIL-10 at a dose of 3.5 × 10
12
genome copies induced high hIL-10 levels in the CSF, exceeding the target concentration previously found to be antiallodynic in rodents by >1000-fold. AAV8/EGFP targeted the primary sensory and motor neurons and the meninges. hIL-10, a xenogeneic protein in dogs, induced anti-hIL-10 antibodies detectable in the CSF and serum of dogs. The high hIL-10 levels demonstrate the efficacy of AAV for delivery of secreted transgenes into the IT space of large animals, suggesting a strong case for further development toward clinical testing.
Journal Article
Fatal Meningitis in Swine after Intrathecal Administration of Adeno-associated Virus Expressing Syngeneic Interleukin-10
2017
Interleukin-10 (IL-10) delivered by intrathecal (i.t.) gene vectors is a candidate investigational new drug (IND) for several chronic neurological disorders such as neuropathic pain. We performed a preclinical safety study of IL-10. A syngeneic large animal model was used delivering porcine IL-10 (pIL-10) to the i.t. space in swine by adeno-associated virus serotype 8 (AAV8), a gene vector that was previously found to be nontoxic in the i.t. space. Unexpectedly, animals became ill, developing ataxia, seizures, and an inability to feed and drink, and required euthanasia. Necropsy demonstrated lymphocytic meningitis without evidence of infection in the presence of normal laboratory findings for body fluids and normal histopathology of peripheral organs. Results were replicated in a second animal cohort by a team of independent experimenters. An extensive infectious disease and neuropathology workup consisting of comprehensive testing of tissues and body fluids in a specialized research veterinary pathology environment did not identify a pathogen. These observations raise the concern that i.t. IL-10 therapy may not be benign, that previously used xenogeneic models testing the human homolog of IL-10 may not have been sensitive enough to detect toxicity, and that additional preclinical studies may be needed before clinical testing of IL-10 can be considered.
Porcine interleukin-10 (IL-10) was delivered to the intrathecal (i.t.) space in swine by AAV8. Animals developed ataxia and seizures requiring euthanasia. Necropsy demonstrated sterile lymphocytic meningitis. Syngeneic i.t. IL-10 therapy may not be benign. Previous xenogeneic models testing the human homolog may not have been sensitive enough to detect toxicity.
Journal Article