Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
19
result(s) for
"Plochberger, Birgit"
Sort by:
Nanomechanical binding mechanism of ligands drives agonistic activity
2025
Monoclonal antibodies and ligands targeting CD40 exhibit a wide range of agonistic activities and antitumor responses. Studies have shown that the flexibility and affinity of antibodies play a crucial role in their immunostimulatory activity. However, a systematic comparison with the natural ligand is yet missing and a detailed investigation with respect to molecular rigidity, binding kinetics, and bond lifetime has not been undertaken to date. Here, we study the dynamic binding features of clinically relevant anti-hCD40 antibody subclasses, ChiLob 7/4, and the trimeric human CD40L to hCD40 at the single-molecule level. We visualize resembling of hCD40 receptors into dimers and higher-order oligomers that are dynamically captured and released by both ChiLob 7/4 and hCD40L with their multiple binding sites. Thereby, ChiLob 7/4 acts as a nanomechanical calliper and rotates its Fab arms in a highly dynamic fashion to screen for hCD40 binding, while hCD40L undergoes significantly less conformational changes. Despite its minor molecular flexibility, hCD40L performs association, dissociation, and re-association of hCD40 ten times faster when compared to ChiLob 7/4. We uncover a distinct binding mechanism that may explain the enhanced cluster formation potential and agonistic activity of the natural ligand and will inspire the design of novel ligand formats.
Monoclonal antibodies and ligands targeting CD40 exhibit diverse agonistic and antitumor activities that are influenced by their design. Here, the authors identify mechanistic differences between clinically relevant anti-CD40 subclasses and CD40L, focusing on the dynamics and strengths of multi-bond formation at the single-molecule level.
Journal Article
Lipoprotein Particles as Shuttles for Hydrophilic Cargo
by
Plochberger, Birgit
,
Weber, Florian
,
Axmann, Markus
in
Analysis
,
Antibodies
,
Atomic force microscopy
2023
Lipoprotein particles (LPs) are excellent transporters and have been intensively studied in cardiovascular diseases, especially regarding parameters such as their class distribution and accumulation, site-specific delivery, cellular internalization, and escape from endo/lysosomal compartments. The aim of the present work is the hydrophilic cargo loading of LPs. As an exemplary proof-of-principle showcase, the glucose metabolism-regulating hormone, insulin, was successfully incorporated into high-density lipoprotein (HDL) particles. The incorporation was studied and verified to be successful using Atomic Force Microscopy (AFM) and Fluorescence Microscopy (FM). Single-molecule-sensitive FM together with confocal imaging visualized the membrane interaction of single, insulin-loaded HDL particles and the subsequent cellular translocation of glucose transporter type 4 (Glut4).
Journal Article
“Head-to-Toe” Lipid Properties Govern the Binding and Cargo Transfer of High-Density Lipoprotein
by
Sych, Taras
,
Schütz, Gerhard J.
,
Weber, Florian
in
Binding
,
Biological membranes
,
Biological properties
2024
The viscoelastic properties of biological membranes are crucial in controlling cellular functions and are determined primarily by the lipids’ composition and structure. This work studies these properties by varying the structure of the constituting lipids in order to influence their interaction with high-density lipoprotein (HDL) particles. Various fluorescence-based techniques were applied to study lipid domains, membrane order, and the overall lateral as well as the molecule–internal glycerol region mobility in HDL–membrane interactions (i.e., binding and/or cargo transfer). The analysis of interactions with HDL particles and various lipid phases revealed that both fully fluid and some gel-phase lipids preferentially interact with HDL particles, although differences were observed in protein binding and cargo exchange. Both interactions were reduced with ordered lipid mixtures containing cholesterol. To investigate the mechanism, membranes were prepared from single-lipid components, enabling step-by-step modification of the lipid building blocks. On a biophysical level, the different mixtures displayed varying stiffness, fluidity, and hydrogen bond network changes. Increased glycerol mobility and a strengthened hydrogen bond network enhanced anchoring interactions, while fluid membranes with a reduced water network facilitated cargo transfer. In summary, the data indicate that different lipid classes are involved depending on the type of interaction, whether anchoring or cargo transfer.
Journal Article
Biomolecular Characterization of Putative Antidiabetic Herbal Extracts
by
Stadlbauer, Verena
,
Borgmann, Daniela
,
Plochberger, Birgit
in
1-Phosphatidylinositol 3-kinase
,
Actin
,
Adipocytes
2016
Induction of GLUT4 translocation in the absence of insulin is considered a key concept to decrease elevated blood glucose levels in diabetics. Due to the lack of pharmaceuticals that specifically increase the uptake of glucose from the blood circuit, application of natural compounds might be an alternative strategy. However, the effects and mechanisms of action remain unknown for many of those substances. For this study we investigated extracts prepared from seven different plants, which have been reported to exhibit anti-diabetic effects, for their GLUT4 translocation inducing properties. Quantitation of GLUT4 translocation was determined by total internal reflection fluorescence (TIRF) microscopy in insulin sensitive CHO-K1 cells and adipocytes. Two extracts prepared from purslane (Portulaca oleracea) and tindora (Coccinia grandis) were found to induce GLUT4 translocation, accompanied by an increase of intracellular glucose concentrations. Our results indicate that the PI3K pathway is mainly responsible for the respective translocation process. Atomic force microscopy was used to prove complete plasma membrane insertion. Furthermore, this approach suggested a compound mediated distribution of GLUT4 molecules in the plasma membrane similar to insulin stimulated conditions. Utilizing a fluorescent actin marker, TIRF measurements indicated an impact of purslane and tindora on actin remodeling as observed in insulin treated cells. Finally, in-ovo experiments suggested a significant reduction of blood glucose levels under tindora and purslane treated conditions in a living organism. In conclusion, this study confirms the anti-diabetic properties of tindora and purslane, which stimulate GLUT4 translocation in an insulin-like manner.
Journal Article
Plasma Membrane Lipids: An Important Binding Site for All Lipoprotein Classes
by
Plochberger, Birgit
,
Axmann, Markus
,
Mikula, Mario
in
Arteriosclerosis
,
Atherosclerosis
,
Binding sites
2021
Cholesterol is one of the main constituents of plasma membranes; thus, its supply is of utmost importance. This review covers the known mechanisms of cholesterol transfer from circulating lipoprotein particles to the plasma membrane, and vice versa. To achieve homeostasis, the human body utilizes cellular de novo synthesis and extracellular transport particles for supply of cholesterol and other lipids via the blood stream. These lipoprotein particles can be classified according to their density: chylomicrons, very low, low, and high-density lipoprotein (VLDL, LDL, and HDL, respectively). They deliver and receive their lipid loads, most importantly cholesterol, to and from cells by several redundant routes. Defects in one of these pathways (e.g., due to mutations in receptors) usually are not immediately fatal. Several redundant pathways, at least temporarily, compensate for the loss of one or more of them, but the defects trigger systemic diseases, such as atherosclerosis later on. Recently, intracellular membrane–membrane contact sites were shown to be involved in intracellular cholesterol transfer and the plasma membrane itself has been proposed to act as a binding site for lipoprotein-mediated cargo unloading.
Journal Article
High-throughput measurement of the content and properties of nano-sized bioparticles with single-particle profiler
2024
We introduce a method, single-particle profiler, that provides single-particle information on the content and biophysical properties of thousands of particles in the size range 5–200 nm. We use our single-particle profiler to measure the messenger RNA encapsulation efficiency of lipid nanoparticles, the viral binding efficiencies of different nanobodies, and the biophysical heterogeneity of liposomes, lipoproteins, exosomes and viruses.
Lipid nanoparticles, viruses, exosomes and liposomes are characterized by analysis of fluorescence fluctuations.
Journal Article
Temporal resolution of protein-protein interactions in the live-cell plasma membrane
by
Haselgrübler, Thomas
,
Plochberger, Birgit
,
Schütz, Gerhard J
in
Affinity labeling
,
Analysis
,
Analytical Chemistry
2010
We have recently devised a method to quantify interactions between a membrane protein (“bait”) and a fluorophore-labeled protein (“prey”) directly in the live-cell plasma membrane (Schwarzenbacher et al. Nature Methods 5:1053-1060 2008). The idea is to seed cells on surfaces containing micro-patterned antibodies against the exoplasmic domain of the bait, and monitor the co-patterning of the fluorescent prey via fluorescence microscopy. Here, we characterized the time course of bait and prey micropattern formation upon seeding the cells onto the micro-biochip. Patterns were formed immediately after contact of the cells with the surface. Cells were able to migrate over the chip surface without affecting the micropattern contrast, which remained constant over hours. On single cells, bait contrast may be subject to fluctuations, indicating that the bait can be released from and recaptured on the micropatterns. We conclude that interaction studies can be performed at any time-point ranging from 5 min to several hours post seeding. Monitoring interactions with time opens up the possibility for new assays, which are briefly sketched in the discussion section.
Journal Article
Localization Microscopy of Actin Cytoskeleton in Human Platelets
2018
Here, we measure the actin cytoskeleton arrangement of different morphological states of human platelets using a new protocol for photo-switching of rhodamine class fluorophores. A new medium composition was established for imaging the cytoskeleton using Alexa Fluor 488 conjugated to phalloidin. Morphological states of platelets bound to a glass substrate are visualized and quantified by two-dimensional localization microscopy at nanoscopic resolution. Marker-less drift correction yields localization of individual Alexa 488 conjugated to phalloidin with a positional accuracy of 12 nm.
Journal Article
Fluorescence Microscopy-Based Quantitation of GLUT4 Translocation: High Throughput or High Content?
by
Neuhauser, Cathrina
,
Wieser, Stefan
,
Weber, Florian
in
Animals
,
Cell Membrane - metabolism
,
CHO Cells
2020
Due to the global rise of type 2 diabetes mellitus (T2DM) in combination with insulin resistance, novel compounds to efficiently treat this pandemic disease are needed. Screening for compounds that induce the translocation of glucose transporter 4 (GLUT4) from the intracellular compartments to the plasma membrane in insulin-sensitive tissues is an innovative strategy. Here, we compared the applicability of three fluorescence microscopy-based assays optimized for the quantitation of GLUT4 translocation in simple cell systems. An objective-type scanning total internal reflection fluorescence (TIRF) microscopy approach was shown to have high sensitivity but only moderate throughput. Therefore, we implemented a prism-type TIR reader for the simultaneous analysis of large cell populations grown in adapted microtiter plates. This approach was found to be high throughput and have sufficient sensitivity for the characterization of insulin mimetic compounds in live cells. Finally, we applied confocal microscopy to giant plasma membrane vesicles (GPMVs) formed from GLUT4-expressing cells. While this assay has only limited throughput, it offers the advantage of being less sensitive to insulin mimetic compounds with high autofluorescence. In summary, the combined implementation of different fluorescence microscopy-based approaches enables the quantitation of GLUT4 translocation with high throughput and high content.
Journal Article
Tuning membrane protein mobility by confinement into nanodomains
by
Knyazev, Denis G.
,
Nimmervoll, Benedikt
,
Klotzsch, Enrico
in
631/61/350/1056
,
631/61/350/2093
,
639/925/350/1056
2017
High-speed atomic force microscopy (HS-AFM) can be used to visualize function-related conformational changes of single soluble proteins. Similar studies of single membrane proteins are, however, hampered by a lack of suitable flat, non-interacting membrane supports and by high protein mobility. Here we show that streptavidin crystals grown on mica-supported lipid bilayers can be used as porous supports for membranes containing biotinylated lipids. Using SecYEG (protein translocation channel) and GlpF (aquaglyceroporin), we demonstrate that the platform can be used to tune the lateral mobility of transmembrane proteins to any value within the dynamic range accessible to HS-AFM imaging through glutaraldehyde-cross-linking of the streptavidin. This allows HS-AFM to study the conformation or docking of spatially confined proteins, which we illustrate by imaging GlpF at sub-molecular resolution and by observing the motor protein SecA binding to SecYEG.
Streptavidin crystals grown on mica-supported lipid bilayers can be used as a platform to tune the lateral mobility of transmembrane proteins, allowing the conformation or docking of spatially confined proteins to be imaged with high-speed atomic force microscopy.
Journal Article