Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
254
result(s) for
"Ploegh, Hidde L."
Sort by:
Road to Ruin: Targeting Proteins for Degradation in the Endoplasmic Reticulum
by
Ploegh, Hidde L.
,
Weissman, Jonathan S.
,
Smith, Melanie H.
in
Analytical, structural and metabolic biochemistry
,
Animals
,
Biological and medical sciences
2011
Some nascent proteins that fold within the endoplasmic reticulum (ER) never reach their native state. Misfolded proteins are removed from the folding machinery, dislocated from the ER into the cytosol, and degraded in a series of pathways collectively referred to as ER-associated degradation (ERAD). Distinct ERAD pathways centered on different E3 ubiquitin ligases survey the range of potential substrates. We now know many of the components of the ERAD machinery and pathways used to detect substrates and target them for degradation. Much less is known about the features used to identify terminally misfolded conformations and the broader role of these pathways in regulating protein half-lives.
Journal Article
A lipid-based model for the creation of an escape hatch from the endoplasmic reticulum
Ditch the 'dislocon'?
A protein channel has been hypothesized as a component of the endoplasmic reticulum (ER) to account for the fact that misfolded proteins and non-enveloped viruses can pass through the ER into the cytoplasm. Der1 protein in yeast and the Derlins in other eukaryotes are examples of protein types that might function in such a dislocation channel or 'dislocon'. But Hidde Ploegh, writing in our occasional Hypothesis series, suggests an alternative mechanism that might do the job without the need for a protein-based channel. Instead, an escape hatch triggered by lipid rearrangement would allow both proteins and viruses to traverse the ER.
Lipids are not encoded by a DNA template and therefore cannot be mutated, knocked out or knocked down. This by no means renders them impotent from a cell biological perspective. Here I propose a model for the involvement of lipid rearrangements in the execution of crucial steps in (glyco)protein quality control.
Journal Article
Noninvasive imaging of tumor progression, metastasis, and fibrosis using a nanobody targeting the extracellular matrix
by
Jailkhani, Noor
,
Rashidian, Mohammad
,
Rickelt, Steffen
in
Adenocarcinoma
,
Alternative splicing
,
Animals
2019
SignificanceCancers, fibroses, and inflammatory disorders are characterized by increased deposition of the extracellular matrix (ECM). ECM biomarkers that are selectively expressed at these disease sites are attractive targets for imaging and therapeutic approaches. Nanobodies against these biomarkers would be pertinent vehicles for the accumulation of imaging and therapeutic cargo at disease sites, potentially increasing specificity and reducing background. We demonstrate the specificity of one such anti-ECM nanobody by using immuno-PET/CT and show that it detects multiple models of cancer, including early lesions and metastases, and also fibroses, with excellent specificity and clarity. Thus, novel strategies for delivering imaging and therapeutic probes specifically to the ECM in disease sites may prove particularly valuable for detection and treatment of cancer in patients.
Extracellular matrix (ECM) deposition is a hallmark of many diseases, including cancer and fibroses. To exploit the ECM as an imaging and therapeutic target, we developed alpaca-derived libraries of “nanobodies” against disease-associated ECM proteins. We describe here one such nanobody, NJB2, specific for an alternatively spliced domain of fibronectin expressed in disease ECM and neovasculature. We showed by noninvasive in vivo immuno-PET/CT imaging that NJB2 detects primary tumors and metastatic sites with excellent specificity in multiple models of breast cancer, including human and mouse triple-negative breast cancer, and in melanoma. We also imaged mice with pancreatic ductal adenocarcinoma (PDAC) in which NJB2 was able to detect not only PDAC tumors but also early pancreatic lesions called pancreatic intraepithelial neoplasias, which are challenging to detect by any current imaging modalities, with excellent clarity and signal-to-noise ratios that outperformed conventional 2-fluorodeoxyglucose PET/CT imaging. NJB2 also detected pulmonary fibrosis in a bleomycin-induced fibrosis model. We propose NJB2 and similar anti-ECM nanobodies as powerful tools for noninvasive detection of tumors, metastatic lesions, and fibroses. Furthermore, the selective recognition of disease tissues makes NJB2 a promising candidate for nanobody-based therapeutic applications.
Journal Article
Durable antitumor responses to CD47 blockade require adaptive immune stimulation
by
Almo, Steven C.
,
Sockolosky, Jonathan T.
,
Ho, Chia Chi M.
in
Adaptive Immunity - drug effects
,
Adaptive Immunity - immunology
,
Animals
2016
Therapeutic antitumor antibodies treat cancer by mobilizing both innate and adaptive immunity. CD47 is an antiphagocytic ligand exploited by tumor cells to blunt antibody effector functions by transmitting an inhibitory signal through its receptor signal regulatory protein alpha (SIRPα). Interference with the CD47–SIRPα interaction synergizes with tumor-specific monoclonal antibodies to eliminate human tumor xenografts by enhancing macrophage-mediated antibody-dependent cellular phagocytosis (ADCP), but synergy between CD47 blockade and ADCP has yet to be demonstrated in immunocompetent hosts. Here, we show that CD47 blockade alone or in combination with a tumor-specific antibody fails to generate antitumor immunity against syngeneic B16F10 tumors in mice. Durable tumor immunity required programmed death-ligand 1 (PD-L1) blockade in combination with an antitumor antibody, with incorporation of CD47 antagonism substantially improving response rates. Our results highlight an underappreciated contribution of the adaptive immune system to anti-CD47 adjuvant therapy and suggest that targeting both innate and adaptive immune checkpoints can potentiate the vaccinal effect of antitumor antibody therapy.
Journal Article
Protection of tissue physicochemical properties using polyfunctional crosslinkers
2019
Understanding complex biological systems requires the system-wide characterization of both molecular and cellular features. Existing methods for spatial mapping of biomolecules in intact tissues suffer from information loss caused by degradation and tissue damage. We report a tissue transformation strategy named stabilization under harsh conditions via intramolecular epoxide linkages to prevent degradation (SHIELD), which uses a flexible polyepoxide to form controlled intra- and intermolecular cross-link with biomolecules. SHIELD preserves protein fluorescence and antigenicity, transcripts and tissue architecture under a wide range of harsh conditions. We applied SHIELD to interrogate system-level wiring, synaptic architecture, and molecular features of virally labeled neurons and their targets in mouse at single-cell resolution. We also demonstrated rapid three-dimensional phenotyping of core needle biopsies and human brain cells. SHIELD enables rapid, multiscale, integrated molecular phenotyping of both animal and clinical tissues.
Journal Article
Site-specific C-terminal and internal loop labeling of proteins using sortase-mediated reactions
by
Ploegh, Hidde L
,
Guimaraes, Carla P
,
Witte, Martin D
in
631/1647/2230/2233
,
631/1647/666/2259
,
631/61/185
2013
Methods for site-specific modification of proteins should be quantitative and versatile with respect to the nature and size of the biological or chemical targets involved. They should require minimal modification of the target, and the underlying reactions should be completed in a reasonable amount of time under physiological conditions. Sortase-mediated transpeptidation reactions meet these criteria and are compatible with other labeling methods. Here we describe the expression and purification conditions for two sortase A enzymes that have different recognition sequences. We also provide a protocol that allows the functionalization of any given protein at its C terminus, or, for select proteins, at an internal site. The target protein is engineered with a sortase-recognition motif (LPXTG) at the place where modification is desired. Upon recognition, sortase cleaves the protein between the threonine and glycine residues, facilitating the attachment of an exogenously added oligoglycine peptide modified with the functional group of choice (e.g., fluorophore, biotin, protein or lipid). Expression and purification of sortase takes ∼3 d, and sortase-mediated reactions take only a few minutes, but reaction times can be extended to increase yields.
Journal Article
An RNA nanoparticle vaccine against Zika virus elicits antibody and CD8+ T cell responses in a mouse model
2017
The Zika virus (ZIKV) outbreak in the Americas and South Pacific poses a significant burden on human health because of ZIKV’s neurotropic effects in the course of fetal development. Vaccine candidates against ZIKV are coming online, but immunological tools to study anti-ZIKV responses in preclinical models, particularly T cell responses, remain sparse. We deployed RNA nanoparticle technology to create a vaccine candidate that elicited ZIKV E protein-specific IgG responses in C57BL/6 mice as assayed by ELISA. Using this tool, we identified a unique H-2D
b
-restricted epitope to which there was a CD8
+
T cell response in mice immunized with our modified dendrimer-based RNA nanoparticle vaccine. These results demonstrate that this approach can be used to evaluate new candidate antigens and identify immune correlates without the use of live virus.
Journal Article
Anti–CTLA-4 therapy requires an Fc domain for efficacy
by
Le Gall, Camille
,
Fedorov, Alexander A.
,
Weissleder, Ralph
in
Animal models
,
Anticancer properties
,
Antitumor activity
2018
Ipilimumab, a monoclonal antibody that recognizes cytotoxic T lymphocyte antigen (CTLA)-4, was the first approved “checkpoint”-blocking anticancer therapy. In mouse tumor models, the response to antibodies against CTLA-4 depends entirely on expression of the Fcγ receptor (FcγR), which may facilitate antibody-dependent cellular phagocytosis, but the contribution of simple CTLA-4 blockade remains unknown. To understand the role of CTLA-4 blockade in the complete absence of Fc-dependent functions, we developed H11, a high-affinity alpaca heavy chain-only antibody fragment (VHH) against CTLA-4. The VHH H11 lacks an Fc portion, binds monovalently to CTLA-4, and inhibits interactions between CTLA-4 and its ligand by occluding the ligand-binding motif on CTLA-4 as shown crystallographically. We used H11 to visualize CTLA-4 expression in vivo using whole-animal immuno-PET, finding that surface-accessible CTLA-4 is largely confined to the tumor microenvironment. Despite this, H11-mediated CTLA-4 blockade has minimal effects on antitumor responses. Installation of the murine IgG2a constant region on H11 dramatically enhances its antitumor response. Coadministration of the monovalent H11 VHH blocks the efficacy of a full-sized therapeutic antibody. We were thus able to demonstrate that CTLA-4–binding antibodies require an Fc domain for antitumor effect.
Journal Article
Noninvasive imaging of immune responses
by
Jacobsen, Johanne Tracey
,
Rashidian, Mohammad
,
Cragnolini, Juanjo
in
Aminoacyltransferases - physiology
,
Animals
,
Antibodies - immunology
2015
Significance Tumors are often surrounded and invaded by bone marrow-derived cells. Imaging the infiltration of such immune cells into tumors may therefore be an attractive means of detecting tumors or of tracking the response to anticancer therapy. We show that it is possible to detect these cells noninvasively by positron emission tomography (PET) via the surface markers displayed by them. The ability to monitor the immune response in the course of therapy will enable early determination of the efficacy of treatment and will inform decisions as to whether treatment should be stopped or continued. Noninvasive monitoring could therefore change how therapies are applied and assessed, to the benefit of many patients.
At their margins, tumors often contain neutrophils, dendritic cells, and activated macrophages, which express class II MHC and CD11b products. The interplay between stromal cells, tumor cells, and migratory cells such as lymphocytes creates opportunities for noninvasive imaging of immune responses. We developed alpaca-derived antibody fragments specific for mouse class II MHC and CD11b products, expressed on the surface of a variety of myeloid cells. We validated these reagents by flow cytometry and two-photon microscopy to obtain images at cellular resolution. To enable noninvasive imaging of the targeted cell populations, we developed a method to site-specifically label VHHs [the variable domain (V H) of a camelid heavy-chain only antibody] with ¹⁸F or ⁶⁴Cu. Radiolabeled VHHs rapidly cleared the circulation ( t ₁/₂ ≈ 20 min) and clearly visualized lymphoid organs. We used VHHs to explore the possibility of imaging inflammation in both xenogeneic and syngeneic tumor models, which resulted in detection of tumors with remarkable specificity. We also imaged the infiltration of myeloid cells upon injection of complete Freund’s adjuvant. Both anti-class II MHC and anti-CD11b VHHs detected inflammation with excellent specificity. Given the ease of manufacture and labeling of VHHs, we believe that this method could transform the manner in which antitumor responses and/or infectious events may be tracked.
Journal Article
Engineered red blood cells as carriers for systemic delivery of a wide array of functional probes
2014
We developed modified RBCs to serve as carriers for systemic delivery of a wide array of payloads. These RBCs contain modified proteins on their plasma membrane, which can be labeled in a sortase-catalyzed reaction under native conditions without inflicting damage to the target membrane or cell. Sortase accommodates a wide range of natural and synthetic payloads that allow modification of RBCs with substituents that cannot be encoded genetically. As proof of principle, we demonstrate site-specific conjugation of biotin to in vitro-differentiated mouse erythroblasts as well as to mature mouse RBCs. Thus modified, RBCs remain in the bloodstream for up to 28 d. A single domain antibody attached enzymatically to RBCs enables them to bind specifically to target cells that express the antibody target. We extend these experiments to human RBCs and demonstrate efficient sortase-mediated labeling of in vitro-differentiated human reticulocytes.
Journal Article