Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
23 result(s) for "Pluchery, Olivier"
Sort by:
Gold nanoparticles for physics, chemistry and biology
The fascination with gold is a story which spans millennia, however scientists have recently found a new interest for gold when it is divided into miniscule grains, such as gold nanoparticles. This scientific enthusiasm started in various fields of science in the middle of the 1980s and the present book offers a panorama of the major scientific achievements obtained with gold nanoparticles.
How to Use Localized Surface Plasmon for Monitoring the Adsorption of Thiol Molecules on Gold Nanoparticles?
The functionalization of spherical gold nanoparticles (AuNPs) in solution with thiol molecules is essential for further developing their applications. AuNPs exhibit a clear localized surface plasmon resonance (LSPR) at 520 nm in water for 20 nm size nanoparticles, which is extremely sensitive to the local surface chemistry. In this study, we revisit the use of UV-visible spectroscopy for monitoring the LSPR peak and investigate the progressive reaction of thiol molecules on 22 nm gold nanoparticles. FTIR spectroscopy and TEM are used for confirming the nature of ligands and the nanoparticle diameter. Two thiols are studied: 11-mercaptoundecanoic acid (MUDA) and 16-mercaptohexadecanoic acid (MHDA). Surface saturation is detected after adding 20 nmol of thiols into 1.3 × 10−3 nmol of AuNPs, corresponding approximately to 15,000 molecules per AuNPs (which is equivalent to 10.0 molecules per nm2). Saturation corresponds to an LSPR shift of 2.7 nm and 3.9 nm for MUDA and MHDA, respectively. This LSPR shift is analyzed with an easy-to-use analytical model that accurately predicts the wavelength shift. The case of dodecanehtiol (DDT) where the LSPR shift is 15.6 nm is also quickly commented. An insight into the kinetics of the functionalization is obtained by monitoring the reaction for a low thiol concentration, and the reaction appears to be completed in less than one hour.
Two-Colour Sum-Frequency Generation Spectroscopy Coupled to Plasmonics with the CLIO Free Electron Laser
Nonlinear plasmonics requires the use of high-intensity laser sources in the visible and near/mid-infrared spectral ranges to characterise the potential enhancement of the vibrational fingerprint of chemically functionalised nanostructured interfaces aimed at improving the molecular detection threshold in nanosensors. We used Two-Colour Sum-Frequency Generation (2C-SFG) nonlinear optical spectroscopy coupled to the European CLIO Free Electron Laser in order to highlight an energy transfer in organic and inorganic interfaces built on a silicon substrate. We evidence that a molecular pollutant, such as thiophenol molecules adsorbed on small gold metal nanospheres grafted on silicon, was detected at the monolayer scale in the 10 µm infrared spectral range, with increasing SFG intensity of three specific phenyl ring vibration modes reaching two magnitude orders from blue to green–yellow excitation wavelengths. This observation is related to a strong plasmonic coupling to the thiophenol molecules vibrations. The high level of gold nanospheres aggregation on the substrate allows us to dramatically increase the presence of hotspots, revealing collective plasmon modes based on strong local electric fields between the gold nanoparticles packed in close contact on the substrate. This configuration favors detection of Raman active vibration modes, for which 2C-SFG spectroscopy is particularly efficient in this unusual infrared spectral range.
Optical Properties of Gold Nanoparticles
The following sections are included: Introduction What is the ambition of the present chapter? Distinction Between Localized Surface Plasmon Resonance (LSPR) and Surface Plasmon Resonance (SPR) Optical properties of metals The dielectric function of gold Plasmon resonance at surfaces, SPR Localized surface plasmon resonance in nanoparticles, LSPR Theoretical Description of the Localized Plasmon Resonance About Mie theory The quasistatic approximation for describing the localized plasmon resonance Extinction and scattering cross sections Experimental illustrations Local field enhancement and applications Beyond the quasistatic and dipolar approximations Factors Shifting the Plasmon Resonance of Gold Nanoparticles Influence of the surrounding medium Plasmon resonance of ellipsoids and other shapes The case of very small (less than 5 nm) and very large gold nanoparticles (greater than 60 nm) Optical Response of Assemblies of Nanoparticles Supported gold nanoparticles Nanoparticle coupling Effective medium approximation methods Conclusion References
Covalent Grafting of Polyoxometalate Hybrids onto Flat Silicon/Silicon Oxide: Insights from POMs Layers on Oxides
Immobilization of polyoxometalates (POMs) onto oxides is relevant to many applications in the fields of catalysis, energy conversion/storage or molecular electronics. Optimization and understanding the molecule/oxide interface is crucial to rationally improve the performance of the final molecular materials. We herein describe the synthesis and covalent grafting of POM hybrids with remote carboxylic acid functions onto flat Si/SiO2 substrates. Special attention has been paid to the characterization of the molecular layer and to the description of the POM anchoring mode at the oxide interface through the use of various characterization techniques, including ellipsometry, AFM, XPS and FTIR. Finally, electron transport properties were probed in a vertical junction configuration and energy level diagrams have been drawn and discussed in relation with the POM molecular electronic features inferred from cyclic-voltammetry, UV-visible absorption spectra and theoretical calculations. The electronic properties of these POM-based molecular junctions are driven by the POM LUMO (d-orbitals) whatever the nature of the tether or the anchoring group.