Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
63 result(s) for "Poblador-Plou, Beatriz"
Sort by:
Association between mental health comorbidity and health outcomes in type 2 diabetes mellitus patients
Type 2 diabetes mellitus (T2D) is often accompanied by chronic diseases, including mental health problems. We aimed at studying mental health comorbidity prevalence in T2D patients and its association with T2D outcomes through a retrospective, observational study of individuals of the EpiChron Cohort (Aragón, Spain) with prevalent T2D in 2011 (n = 63,365). Participants were categorized as having or not mental health comorbidity (i.e., depression, anxiety, schizophrenia, and/or substance use disorder). We performed logistic regression models, controlled for age, sex and comorbidities, to analyse the likelihood of 4-year mortality, 1-year all-cause hospitalization, T2D-hospitalization, and emergency room visit. Mental health comorbidity was observed in 19% of patients. Depression was the most frequent condition, especially in women (20.7% vs. 7.57%). Mortality risk was higher in patients with mental health comorbidity (odds ratio 1.24; 95% confidence interval 1.16–1.31), especially in those with substance use disorder (2.18; 1.84–2.57) and schizophrenia (1.82; 1.50–2.21). Mental health comorbidity also increased the likelihood of all-cause hospitalization (1.16; 1.10–1.23), T2D-hospitalization (1.51; 1.18–1.93) and emergency room visit (1.26; 1.21–1.32). These results suggest that T2D healthcare management should include specific strategies for the early detection and treatment of mental health problems to reduce its impact on health outcomes.
Patterns of multimorbidity and polypharmacy in young and adult population: Systematic associations among chronic diseases and drugs using factor analysis
The objective was to identify the systematic associations among chronic diseases and drugs in the form of patterns and to describe and clinically interpret the constituted patterns with a focus on exploring the existence of potential drug-drug and drug-disease interactions and prescribing cascades. This observational, cross-sectional study used the demographic and clinical information from electronic medical databases and the pharmacy billing records of all users of the public health system of the Spanish region of Aragon in 2015. An exploratory factor analysis was conducted based on the tetra-choric correlations among the diagnoses of chronic diseases and the dispensed drugs in 887,572 patients aged ≤65 years. The analysis was stratified by age and sex. To name the constituted patterns, assess their clinical nature, and identify potential interactions among diseases and drugs, the associations found in each pattern were independently reviewed by two pharmacists and two doctors and tested against the literature and the information reported in the technical medicinal forms. Six multimorbidity-polypharmacy patterns were found in this large-scale population study, named as respiratory, mental health, cardiometabolic, endocrinological, osteometabolic, and mechanical-pain. The nature of the patterns in terms of diseases and drugs differed by sex and age and became more complex as age advanced. The six clinically sound multimorbidity-polypharmacy patterns described in this non-elderly population confirmed the existence of systematic associations among chronic diseases and medications, and revealed some unexpected associations suggesting the prescribing cascade phenomenon as a potential underlying factor. These findings may help to broaden the focus and orient the early identification of potential interactions when caring for multimorbid patients at high risk of adverse health outcomes due to polypharmacy.
Multimorbidity clusters in patients with chronic obstructive airway diseases in the EpiChron Cohort
Chronic obstructive airway diseases such as chronic obstructive pulmonary disease (COPD), asthma, rhinitis, and obstructive sleep apnea (OSA) are amongst the most common treatable and preventable chronic conditions with high morbidity burden and mortality risk. We aimed to explore the existence of multimorbidity clusters in patients with such diseases and to estimate their prevalence and impact on mortality. We conducted an observational retrospective study in the EpiChron Cohort (Aragon, Spain), selecting all patients with a diagnosis of allergic rhinitis, asthma, COPD, and/or OSA. The study population was stratified by age (i.e., 15–44, 45–64, and ≥ 65 years) and gender. We performed cluster analysis, including all chronic conditions recorded in primary care electronic health records and hospital discharge reports. More than 75% of the patients had multimorbidity (co-existence of two or more chronic conditions). We identified associations of dermatologic diseases with musculoskeletal disorders and anxiety, cardiometabolic diseases with mental health problems, and substance use disorders with neurologic diseases and neoplasms, amongst others. The number and complexity of the multimorbidity clusters increased with age in both genders. The cluster with the highest likelihood of mortality was identified in men aged 45 to 64 years and included associations between substance use disorder, neurologic conditions, and cancer. Large-scale epidemiological studies like ours could be useful when planning healthcare interventions targeting patients with chronic obstructive airway diseases and multimorbidity.
Identifying multimorbidity profiles associated with COVID-19 severity in chronic patients using network analysis in the PRECOVID Study
A major risk factor of COVID-19 severity is the patient's health status at the time of the infection. Numerous studies focused on specific chronic diseases and identified conditions, mainly cardiovascular ones, associated with poor prognosis. However, chronic diseases tend to cluster into patterns, each with its particular repercussions on the clinical outcome of infected patients. Network analysis in our population revealed that not all cardiovascular patterns have the same risk of COVID-19 hospitalization or mortality and that this risk depends on the pattern of multimorbidity, besides age and sex. We evidenced that negative outcomes were strongly related to patterns in which diabetes and obesity stood out in older women and men, respectively. In younger adults, anxiety was another disease that increased the risk of severity, most notably when combined with menstrual disorders in women or atopic dermatitis in men. These results have relevant implications for organizational, preventive, and clinical actions to help meet the needs of COVID-19 patients.
Chronic diseases associated with increased likelihood of hospitalization and mortality in 68,913 COVID-19 confirmed cases in Spain: A population-based cohort study
Clinical outcomes among COVID-19 patients vary greatly with age and underlying comorbidities. We aimed to determine the demographic and clinical factors, particularly baseline chronic conditions, associated with an increased risk of severity in COVID-19 patients from a population-based perspective and using data from electronic health records (EHR). Retrospective, observational study in an open cohort analyzing all 68,913 individuals (mean age 44.4 years, 53.2% women) with SARS-CoV-2 infection between 15 June and 19 December 2020 using exhaustive electronic health registries. Patients were followed for 30 days from inclusion or until the date of death within that period. We performed multivariate logistic regression to analyze the association between each chronic disease and severe infection, based on hospitalization and all-cause mortality. 5885 (8.5%) individuals showed severe infection and old age was the most influencing factor. Congestive heart failure (odds ratio -OR- men: 1.28, OR women: 1.39), diabetes (1.37, 1.24), chronic renal failure (1.31, 1.22) and obesity (1.21, 1.26) increased the likelihood of severe infection in both sexes. Chronic skin ulcers (1.32), acute cerebrovascular disease (1.34), chronic obstructive pulmonary disease (1.21), urinary incontinence (1.17) and neoplasms (1.26) in men, and infertility (1.87), obstructive sleep apnea (1.43), hepatic steatosis (1.43), rheumatoid arthritis (1.39) and menstrual disorders (1.18) in women were also associated with more severe outcomes. Age and specific cardiovascular and metabolic diseases increased the risk of severe SARS-CoV-2 infections in men and women, whereas the effects of certain comorbidities are sex specific. Future studies in different settings are encouraged to analyze which profiles of chronic patients are at higher risk of poor prognosis and should therefore be the targets of prevention and shielding strategies.
Chronic Obstructive Pulmonary Disease (COPD) as a disease of early aging: Evidence from the EpiChron Cohort
Aging is an important risk factor for most chronic diseases. Patients with COPD develop more comorbidities than non-COPD subjects. We hypothesized that the development of comorbidities characteristically affecting the elderly occur at an earlier age in subjects with the diagnosis of COPD. We included all subjects carrying the diagnosis of COPD (n = 27,617), and a similar number of age and sex matched individuals without the diagnosis, extracted from the 727,241 records of individuals 40 years and older included in the EpiChron Cohort (Aragon, Spain). We compared the cumulative number of comorbidities, their prevalence and the mortality risk between both groups. Using network analysis, we explored the connectivity between comorbidities and the most influential comorbidities in both groups. We divided the groups into 5 incremental age categories and compared their comorbidity networks. We then selected those comorbidities known to affect primarily the elderly and compared their prevalence across the 5 age groups. In addition, we replicated the analysis in the smokers' subgroup to correct for the confounding effect of cigarette smoking. Subjects with COPD had more comorbidities and died at a younger age compared to controls. Comparison of both cohorts across 5 incremental age groups showed that the number of comorbidities, the prevalence of diseases characteristic of aging and network's density for the COPD group aged 56-65 were similar to those of non-COPD 15 to 20 years older. The findings persisted after adjusting for smoking. Multimorbidity increases with age but in patients carrying the diagnosis of COPD, these comorbidities are seen at an earlier age.
Comorbidity of dementia: a cross-sectional study of primary care older patients
Background The epidemiologic study of comorbidities of an index health problem represents a methodological challenge. This study cross-sectionally describes and analyzes the comorbidities associated with dementia in older patients and reviews the existing similarities and differences between identified comorbid diseases using the statistical methods most frequently applied in current research. Methods Cross-sectional study of 72,815 patients over 64 seen in 19 Spanish primary care centers during 2008. Chronic diseases were extracted from electronic health records and grouped into Expanded Diagnostic Clusters®. Three different statistical methods were applied (i.e., analysis of prevalence data, multiple regression and factor analysis), stratifying by sex. Results The two most frequent comorbidities both for men and women with dementia were hypertension and diabetes. Yet, logistic regression and factor analysis demonstrated that the comorbidities significantly associated with dementia were Parkinson’s disease, congestive heart failure, cerebrovascular disease, anemia, cardiac arrhythmia, chronic skin ulcers, osteoporosis, thyroid disease, retinal disorders, prostatic hypertrophy, insomnia and anxiety and neurosis. Conclusions The analysis of the comorbidities associated with an index disease (e.g., dementia) must not be exclusively based on prevalence rates, but rather on methodologies that allow the discovery of non-random associations between diseases. A deep and reliable knowledge about how different diseases are grouped and associated around an index disease such as dementia may orient future longitudinal studies aimed at unraveling causal associations.
Multimorbidity Patterns in Primary Care: Interactions among Chronic Diseases Using Factor Analysis
The primary objective of this study was to identify the existence of chronic disease multimorbidity patterns in the primary care population, describing their clinical components and analysing how these patterns change and evolve over time both in women and men. The secondary objective of this study was to generate evidence regarding the pathophysiological processes underlying multimorbidity and to understand the interactions and synergies among the various diseases. This observational, retrospective, multicentre study utilised information from the electronic medical records of 19 primary care centres from 2008. To identify multimorbidity patterns, an exploratory factor analysis was carried out based on the tetra-choric correlations between the diagnostic information of 275,682 patients who were over 14 years of age. The analysis was stratified by age group and sex. Multimorbidity was found in all age groups, and its prevalence ranged from 13% in the 15 to 44 year age group to 67% in those 65 years of age or older. Goodness-of-fit indicators revealed sample values between 0.50 and 0.71. We identified five patterns of multimorbidity: cardio-metabolic, psychiatric-substance abuse, mechanical-obesity-thyroidal, psychogeriatric and depressive. Some of these patterns were found to evolve with age, and there were differences between men and women. Non-random associations between chronic diseases result in clinically consistent multimorbidity patterns affecting a significant proportion of the population. Underlying pathophysiological phenomena were observed upon which action can be taken both from a clinical, individual-level perspective and from a public health or population-level perspective.
Multimorbidity patterns in COVID-19 patients and their relationship with infection severity: MRisk-COVID study
Several chronic conditions have been identified as risk factors for severe COVID-19 infection, yet the implications of multimorbidity need to be explored. The objective of this study was to establish multimorbidity clusters from a cohort of COVID-19 patients and assess their relationship with infection severity/mortality. The MRisk-COVID Big Data study included 14 286 COVID-19 patients of the first wave in a Spanish region. The cohort was stratified by age and sex. Multimorbid individuals were subjected to a fuzzy c-means cluster analysis in order to identify multimorbidity clusters within each stratum. Bivariate analyses were performed to assess the relationship between severity/mortality and age, sex, and multimorbidity clusters. Severe infection was reported in 9.5% (95% CI: 9.0-9.9) of the patients, and death occurred in 3.9% (95% CI: 3.6-4.2). We identified multimorbidity clusters related to severity/mortality in most age groups from 21 to 65 years. In males, the cluster with highest percentage of severity/mortality was Heart-liver-gastrointestinal (81-90 years, 34.1% severity, 29.5% mortality). In females, the clusters with the highest percentage of severity/mortality were Diabetes-cardiovascular (81-95 years, 22.5% severity) and Psychogeriatric (81-95 years, 16.0% mortality). This study characterized several multimorbidity clusters in COVID-19 patients based on sex and age, some of which were found to be associated with higher rates of infection severity/mortality, particularly in younger individuals. Further research is encouraged to ascertain the role of specific multimorbidity patterns on infection prognosis and identify the most vulnerable morbidity profiles in the community.
A Data Transformation Methodology to Create Findable, Accessible, Interoperable, and Reusable Health Data: Software Design, Development, and Evaluation Study
Sharing health data is challenging because of several technical, ethical, and regulatory issues. The Findable, Accessible, Interoperable, and Reusable (FAIR) guiding principles have been conceptualized to enable data interoperability. Many studies provide implementation guidelines, assessment metrics, and software to achieve FAIR-compliant data, especially for health data sets. Health Level 7 (HL7) Fast Healthcare Interoperability Resources (FHIR) is a health data content modeling and exchange standard. Our goal was to devise a new methodology to extract, transform, and load existing health data sets into HL7 FHIR repositories in line with FAIR principles, develop a Data Curation Tool to implement the methodology, and evaluate it on health data sets from 2 different but complementary institutions. We aimed to increase the level of compliance with FAIR principles of existing health data sets through standardization and facilitate health data sharing by eliminating the associated technical barriers. Our approach automatically processes the capabilities of a given FHIR end point and directs the user while configuring mappings according to the rules enforced by FHIR profile definitions. Code system mappings can be configured for terminology translations through automatic use of FHIR resources. The validity of the created FHIR resources can be automatically checked, and the software does not allow invalid resources to be persisted. At each stage of our data transformation methodology, we used particular FHIR-based techniques so that the resulting data set could be evaluated as FAIR. We performed a data-centric evaluation of our methodology on health data sets from 2 different institutions. Through an intuitive graphical user interface, users are prompted to configure the mappings into FHIR resource types with respect to the restrictions of selected profiles. Once the mappings are developed, our approach can syntactically and semantically transform existing health data sets into HL7 FHIR without loss of data utility according to our privacy-concerned criteria. In addition to the mapped resource types, behind the scenes, we create additional FHIR resources to satisfy several FAIR criteria. According to the data maturity indicators and evaluation methods of the FAIR Data Maturity Model, we achieved the maximum level (level 5) for being Findable, Accessible, and Interoperable and level 3 for being Reusable. We developed and extensively evaluated our data transformation approach to unlock the value of existing health data residing in disparate data silos to make them available for sharing according to the FAIR principles. We showed that our method can successfully transform existing health data sets into HL7 FHIR without loss of data utility, and the result is FAIR in terms of the FAIR Data Maturity Model. We support institutional migration to HL7 FHIR, which not only leads to FAIR data sharing but also eases the integration with different research networks.