Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
14
result(s) for
"Polci, Andrea"
Sort by:
Spatial and temporal dynamics of West Nile virus between Africa and Europe
2023
It is unclear whether West Nile virus (WNV) circulates between Africa and Europe, despite numerous studies supporting an African origin and high transmission in Europe. We integrated genomic data with geographic observations and phylogenetic and phylogeographic inferences to uncover the spatial and temporal viral dynamics of WNV between these two continents. We focused our analysis towards WNV lineages 1 (L1) and 2 (L2), the most spatially widespread and pathogenic WNV lineages. Our study shows a Northern-Western African origin of L1, with back-and-forth exchanges between West Africa and Southern-Western Europe; and a Southern African origin of L2, with one main introduction from South Africa to Europe, and no back introductions observed. We also noticed a potential overlap between L1 and L2 Eastern and Western phylogeography and two Afro-Palearctic bird migratory flyways. Future studies linking avian and mosquito species susceptibility, migratory connectivity patterns, and phylogeographic inference are suggested to elucidate the dynamics of emerging viruses.
West Nile virus is an animal pathogen that has spread rapidly in Europe in recent years, causing several human deaths. This study investigates the spatial and temporal dynamics of the virus circulation between Africa (its place of origin) and Europe.
Journal Article
West Nile Virus Lineage 1 in Italy: Newly Introduced or a Re-Occurrence of a Previously Circulating Strain?
by
Monaco, Federica
,
Mencattelli, Giulia
,
Portanti, Ottavio
in
Accipiter gentilis
,
Animals
,
Arbovirus
2021
In Italy, West Nile virus (WNV) appeared for the first time in the Tuscany region in 1998. After 10 years of absence, it re-appeared in the areas surrounding the Po River delta, affecting eight provinces in three regions. Thereafter, WNV epidemics caused by genetically divergent isolates have been documented every year in the country. Since 2018, only WNV Lineage 2 has been reported in the Italian territory. In October 2020, WNV Lineage 1 (WNV-L1) re-emerged in Italy, in the Campania region. This is the first occurrence of WNV-L1 detection in the Italian territory since 2017. WNV was detected in the internal organs of a goshawk (Accipiter gentilis) and a kestrel (Falco tinnunculus). The RNA extracted in the goshawk tissue samples was sequenced, and a Bayesian phylogenetic analysis was performed by a maximum-likelihood tree. Genome analysis, conducted on the goshawk WNV complete genome sequence, indicates that the strain belongs to the WNV-L1 Western-Mediterranean (WMed) cluster. Moreover, a close phylogenetic similarity is observed between the goshawk strain, the 2008–2011 group of Italian sequences, and European strains belonging to the Wmed cluster. Our results evidence the possibility of both a new re-introduction or unnoticed silent circulation in Italy, and the strong importance of keeping the WNV surveillance system in the Italian territory active.
Journal Article
A Web Geographic Information System to share data and explorative analysis tools: The application to West Nile disease in the Mediterranean basin
by
Polci, Andrea
,
Savini, Lara
,
Tora, Susanna
in
Animal diseases
,
Biology and life sciences
,
Climatic analysis
2018
In the last decades an increasing number of West Nile Disease cases was observed in equines and humans in the Mediterranean basin and surveillance systems are set up in numerous countries to manage and control the disease. The collection, storage and distribution of information on the spread of the disease becomes important for a shared intervention and control strategy. To this end, a Web Geographic Information System has been developed and disease data, climatic and environmental remote sensed data, full genome sequences of selected isolated strains are made available. This paper describes the Disease Monitoring Dashboard (DMD) web system application, the tools available for the preliminary analysis on climatic and environmental factors and the other interactive tools for epidemiological analysis.
WNV occurrence data are collected from multiple official and unofficial sources. Whole genome sequences and metadata of WNV strains are retrieved from public databases or generated in the framework of the Italian surveillance activities. Climatic and environmental data are provided by NASA website. The Geographical Information System is composed by Oracle 10g Database and ESRI ArcGIS Server 10.03; the web mapping client application is developed with the ArcGIS API for Javascript and Phylocanvas library to facilitate and optimize the mash-up approach. ESRI ArcSDE 10.1 has been used to store spatial data.
The DMD application is accessible through a generic web browser at https://netmed.izs.it/networkMediterraneo/. The system collects data through on-line forms and automated procedures and visualizes data as interactive graphs, maps and tables. The spatial and temporal dynamic visualization of disease events is managed by a time slider that returns results on both map and epidemiological curve. Climatic and environmental data can be associated to cases through python procedures and downloaded as Excel files.
The system compiles multiple datasets through user-friendly web tools; it integrates entomological, veterinary and human surveillance, molecular information on pathogens and environmental and climatic data. The principal result of the DMD development is the transfer and dissemination of knowledge and technologies to develop strategies for integrated prevention and control measures of animal and human diseases.
Journal Article
Genetic Diversity of Rift Valley Fever Strains Circulating in Namibia in 2010 and 2011
2020
Outbreaks of Rift Valley fever (RVF) occurred in Namibia in 2010 and 2011. Complete genome characterization was obtained from virus isolates collected during disease outbreaks in southern Namibia in 2010 and from wildlife in Etosha National Park in 2011, close to the area where RVF outbreaks occurred in domestic livestock. The virus strains were sequenced using Sanger sequencing (Namibia_2010) or next generation sequencing (Namibia_2011). A sequence-independent, single-primer amplification (SISPA) protocol was used in combination with the Illumina Next 500 sequencer. Phylogenetic analysis of the sequences of the small (S), medium (M), and large (L) genome segments of RVF virus (RVFV) provided evidence that two distinct RVFV strains circulated in the country. The strain collected in Namibia in 2010 is genetically similar to RVFV strains circulating in South Africa in 2009 and 2010, confirming that the outbreaks reported in the southern part of Namibia in 2010 were caused by possible dissemination of the infection from South Africa. Isolates collected in 2011 were close to RVFV isolates from 2010 collected in humans in Sudan and which belong to the large lineage containing RVFV strains that caused an outbreak in 2006–2008 in eastern Africa. This investigation showed that the RVFV strains circulating in Namibia in 2010 and 2011 were from two different introductions and that RVFV has the ability to move across regions. This supports the need for risk-based surveillance and monitoring.
Journal Article
Electrospun PLGA Fiber Diameter and Alignment of Tendon Biomimetic Fleece Potentiate Tenogenic Differentiation and Immunomodulatory Function of Amniotic Epithelial Stem Cells
by
Ancora, Massimo
,
Berardinelli, Paolo
,
Barboni, Barbara
in
aligned fibers
,
Amnion - cytology
,
amniotic epithelial stem cells
2020
Injured tendons are challenging in their regeneration; thus, tissue engineering represents a promising solution. This research tests the hypothesis that the response of amniotic epithelial stem cells (AECs) can be modulated by fiber diameter size of tendon biomimetic fleeces. Particularly, the effect of electrospun poly(lactide-co-glycolide) (PLGA) fleeces with highly aligned microfibers possessing two different diameter sizes (1.27 and 2.5 µm: ha1- and ha2-PLGA, respectively) was tested on the ability of AECs to differentiate towards the tenogenic lineage by analyzing tendon related markers (Collagen type I: COL1 protein and mRNA Scleraxis: SCX, Tenomodulin: TNMD and COL1 gene expressions) and to modulate their immunomodulatory properties by investigating the pro- (IL-6 and IL-12) and anti- (IL-4 and IL-10) inflammatory cytokines. It was observed that fiber alignment and not fiber size influenced cell morphology determining the morphological change of AECs from cuboidal to fusiform tenocyte-like shape. Instead, fleece mechanical properties, cell proliferation, tenogenic differentiation, and immunomodulation were regulated by changing the ha-PLGA microfiber diameter size. Specifically, higher DNA quantity and better penetration within the fleece were found on ha2-PLGA, while ha1-PLGA fleeces with small fiber diameter size had better mechanical features and were more effective on AECs trans-differentiation towards the tenogenic lineage by significantly translating more efficiently SCX into the downstream effector TNMD. Moreover, the fiber diameter of 1.27 µm induced higher expression of pro-regenerative, anti-inflammatory interleukins mRNA expression (IL-4 and IL-10) with favorable IL-12/IL-10 ratio with respect to the fiber diameter of 2.5 µm. The obtained results demonstrate that fiber diameter is a key factor to be considered when designing tendon biomimetic fleece for tissue repair and provide new insights into the importance of controlling matrix parameters in enhancing cell differentiation and immunomodulation either for the cells functionalized within or for the transplanted host tissue.
Journal Article
West Nile virus lineage 2 overwintering in Italy
by
Roberto Rosa
,
Valentina Curini
,
Giulia Mencattelli
in
Animals
,
bird-to-bird transmission
,
Birds
2022
In January 2022, West Nile virus (WNV) lineage 2 (L2) was detected in an adult female goshawk rescued near Perugia in the region of Umbria (Italy). The animal showed neurological symptoms and died 15 days after its recovery in a wildlife rescue center. This was the second case of WNV infection recorded in birds in the Umbria region during the cold season, when mosquitoes, the main WNV vectors, are usually not active. According to the National Surveillance Plan, the Umbria region is included amongst the WNV low-risk areas. The necropsy evidenced generalized pallor of the mucous membranes, mild splenomegaly, and cerebral edema. WNV L2 was detected in the brain, heart, kidney, and spleen homogenate using specific RT-PCR. Subsequently, the extracted viral RNA was sequenced. A Bayesian phylogenetic analysis performed through a maximum-likelihood tree showed that the genome sequence clustered with the Italian strains within the European WNV strains among the central-southern European WNV L2 clade. These results, on the one hand, confirmed that the WNV L2 strains circulating in Italy are genetically stable and, on the other hand, evidenced a continuous WNV circulation in Italy throughout the year. In this report case, a bird-to-bird WNV transmission was suggested to support the virus overwintering. The potential transmission through the oral route in a predatory bird may explain the relatively rapid spread of WNV, as well as other flaviviruses characterized by similar transmission patterns. However, rodent-to-bird transmission or mosquito-to-bird transmission cannot be excluded, and further research is needed to better understand WNV transmission routes during the winter season in Italy.
Journal Article
Epidemiological and Evolutionary Analysis of West Nile Virus Lineage 2 in Italy
by
Morelli, Daniela
,
Silverj, Andrea
,
Monaco, Federica
in
Animal diseases
,
animal health
,
Animals
2022
West Nile virus (WNV) is a mosquito-borne virus potentially causing serious illness in humans and other animals. Since 2004, several studies have highlighted the progressive spread of WNV Lineage 2 (L2) in Europe, with Italy being one of the countries with the highest number of cases of West Nile disease reported. In this paper, we give an overview of the epidemiological and genetic features characterising the spread and evolution of WNV L2 in Italy, leveraging data obtained from national surveillance activities between 2011 and 2021, including 46 newly assembled genomes that were analysed under both phylogeographic and phylodynamic frameworks. In addition, to better understand the seasonal patterns of the virus, we used a machine learning model predicting areas at high-risk of WNV spread. Our results show a progressive increase in WNV L2 in Italy, clarifying the dynamics of interregional circulation, with no significant introductions from other countries in recent years. Moreover, the predicting model identified the presence of suitable conditions for the 2022 earlier and wider spread of WNV in Italy, underlining the importance of using quantitative models for early warning detection of WNV outbreaks. Taken together, these findings can be used as a reference to develop new strategies to mitigate the impact of the pathogen on human and other animal health in endemic areas and new regions.
Journal Article
First External Quality Assessment of Molecular and Serological Detection of Rift Valley Fever in the Western Mediterranean Region
by
El Mellouli, Fatiha
,
Sari Nassim, Chabane
,
Bortone, Grazia
in
Animal health
,
Animals
,
Antibodies
2015
Rift Valley fever (RVF) is a mosquito-borne viral zoonosis which affects humans and a wide range of domestic and wild ruminants. The large spread of RVF in Africa and its potential to emerge beyond its geographic range requires the development of surveillance strategies to promptly detect the disease outbreaks in order to implement efficient control measures, which could prevent the widespread of the virus to humans. The Animal Health Mediterranean Network (REMESA) linking some Northern African countries as Algeria, Egypt, Libya, Mauritania, Morocco, Tunisia with Southern European ones as France, Italy, Portugal and Spain aims at improving the animal health in the Western Mediterranean Region since 2009. In this context, a first assessment of the diagnostic capacities of the laboratories involved in the RVF surveillance was performed. The first proficiency testing (external quality assessment--EQA) for the detection of the viral genome and antibodies of RVF virus (RVFV) was carried out from October 2013 to February 2014. Ten laboratories participated from 6 different countries (4 from North Africa and 2 from Europe). Six laboratories participated in the ring trial for both viral RNA and antibodies detection methods, while four laboratories participated exclusively in the antibodies detection ring trial. For the EQA targeting the viral RNA detection methods 5 out of 6 laboratories reported 100% of correct results. One laboratory misidentified 2 positive samples as negative and 3 positive samples as doubtful indicating a need for corrective actions. For the EQA targeting IgG and IgM antibodies methods 9 out of the 10 laboratories reported 100% of correct results, whilst one laboratory reported all correct results except one false-positive. These two ring trials provide evidence that most of the participating laboratories are capable to detect RVF antibodies and viral RNA thus recognizing RVF infection in affected ruminants with the diagnostic methods currently available.
Journal Article
First Detection of West Nile Virus by Nasopharyngeal Swab, Followed by Phylogenetic Analysis
2024
West Nile Virus, an arthropod-borne RNA virus, may result in severe neurological disease. West Nile neuroinvasive disease is characterized by meningitis, encephalitis, and possible acute flaccid paralysis. Here, we report a case of neuroinvasive WNV in a 65-year-old woman hospitalized for hyperpyrexia, chills, intense asthenia, and continuous vomiting. Within days, her clinical condition worsened with the onset of severe neurological symptoms, leading to her death within 10 days despite supportive therapies being administered. The diagnosis of West Nile disease was made through nucleic acid amplification testing (NAAT) on blood and cerebrospinal fluid. However, in the final stages of the illness, cerebrospinal fluid collection was not possible due to the patient’s critical condition, and a nasopharyngeal swab was used instead. The nasopharyngeal swab facilitated the collection of a sample, which was subsequently analyzed for the presence of the virus and allowed for sequencing, showing that it was a strain that had been circulating in Sardinia for some time and had demonstrated its pathogenicity by causing the death of a hawk in 2021. This case report highlights the rapid progression and severity of WNV infection, particularly in vulnerable individuals, and suggests the potential utility of nasopharyngeal swabs as a less invasive option for sample collection. It also underscores the potential for the zoonotic transmission of the virus from birds to humans through vectors, emphasizing the importance of monitoring and controlling WNV outbreaks, especially in regions where such circulation is observed.
Journal Article
Origin and evolution of West Nile virus lineage 1 in Italy
2024
West Nile virus (WNV) is a mosquito-borne pathogen that can infect humans, equids, and many bird species, posing a threat to their health. It consists of eight lineages, with Lineage 1 (L1) and Lineage 2 (L2) being the most prevalent and pathogenic. Italy is one of the hardest-hit European nations, with 330 neurological cases and 37 fatalities in humans in the 2021–2022 season, in which the L1 re-emerged after several years of low circulation. We assembled a database comprising all publicly available WNV genomes, along with 31 new Italian strains of WNV L1 sequenced in this study, to trace their evolutionary history using phylodynamics and phylogeography. Our analysis suggests that WNV L1 may have initially entered Italy from Northern Africa around 1985 and indicates a connection between European and Western Mediterranean countries, with two distinct strains circulating within Italy. Furthermore, we identified new genetic mutations that are typical of the Italian strains and that can be tested in future studies to assess their pathogenicity. Our research clarifies the dynamics of WNV L1 in Italy, provides a comprehensive dataset of genome sequences for future reference, and underscores the critical need for continuous and coordinated surveillance efforts between Europe and Africa.
Journal Article