Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
61
result(s) for
"Polhemus, Mark"
Sort by:
Social-ecological factors and preventive actions decrease the risk of dengue infection at the household-level: Results from a prospective dengue surveillance study in Machala, Ecuador
by
Beltrán-Ayala, Efraín
,
Stewart-Ibarra, Anna M.
,
Polhemus, Mark E.
in
Abandonments
,
Adult
,
Aedes - virology
2017
In Ecuador, dengue virus (DENV) infections transmitted by the Aedes aegypti mosquito are among the greatest public health concerns in urban coastal communities. Community- and household-level vector control is the principal means of controlling disease outbreaks. This study aimed to assess the impact of knowledge, attitudes, and practices (KAPs) and social-ecological factors on the presence or absence of DENV infections in the household.
In 2014 and 2015, individuals with DENV infections from sentinel clinics in Machala, Ecuador, were invited to participate in the study, as well as members of their household and members of four neighboring households located within 200 meters. We conducted diagnostic testing for DENV on all study participants; we surveyed heads of households (HOHs) regarding demographics, housing conditions and KAPs. We compared KAPs and social-ecological factors between households with (n = 139) versus without (n = 80) DENV infections, using bivariate analyses and multivariate logistic regression models with and without interactions.
Significant risk factors in multivariate models included proximity to abandoned properties, interruptions in piped water, and shaded patios (p<0.05). Significant protective factors included the use of mosquito bed nets, fumigation inside the home, and piped water inside the home (p<0.05). In bivariate analyses (but not multivariate modeling), DENV infections were positively associated with HOHs who were male, employed, and of younger age than households without infections (p<0.05). DENV infections were not associated with knowledge, attitude, or reported barriers to prevention activities.
Specific actions that can be considered to decrease the risk of DENV infections in the household include targeting vector control in highly shaded properties, fumigating inside the home, and use of mosquito bed nets. Community-level interventions include cleanup of abandoned properties, daily garbage collection, and reliable piped water inside houses. These findings can inform interventions to reduce the risk of other diseases transmitted by the Ae. aegypti mosquito, such as chikungunya and Zika fever.
Journal Article
Antigen-Displaying Lipid-Enveloped PLGA Nanoparticles as Delivery Agents for a Plasmodium vivax Malaria Vaccine
2012
The parasite Plasmodium vivax is the most frequent cause of malaria outside of sub-Saharan Africa, but efforts to develop viable vaccines against P. vivax so far have been inadequate. We recently developed pathogen-mimicking polymeric vaccine nanoparticles composed of the FDA-approved biodegradable polymer poly(lactide-co-glycolide) acid (PLGA) \"enveloped\" by a lipid membrane. In this study, we sought to determine whether this vaccine delivery platform could be applied to enhance the immune response against P. vivax sporozoites. A candidate malaria antigen, VMP001, was conjugated to the lipid membrane of the particles, and an immunostimulatory molecule, monophosphoryl lipid A (MPLA), was incorporated into the lipid membranes, creating pathogen-mimicking nanoparticle vaccines (VMP001-NPs). Vaccination with VMP001-NPs promoted germinal center formation and elicited durable antigen-specific antibodies with significantly higher titers and more balanced Th1/Th2 responses in vivo, compared with vaccines composed of soluble protein mixed with MPLA. Antibodies raised by NP vaccinations also exhibited enhanced avidity and affinity toward the domains within the circumsporozoite protein implicated in protection and were able to agglutinate live P. vivax sporozoites. These results demonstrate that these VMP001-NPs are promising vaccines candidates that may elicit protective immunity against P. vivax sporozoites.
Journal Article
Phase 1/2a Trial of Plasmodium vivax Malaria Vaccine Candidate VMP001/AS01B in Malaria-Naive Adults: Safety, Immunogenicity, and Efficacy
by
McCarthy, William F.
,
Lumsden, Joanne
,
Richie, Thomas L.
in
Adolescent
,
Adult
,
Antibodies, Protozoan - immunology
2016
A vaccine to prevent infection and disease caused by Plasmodium vivax is needed both to reduce the morbidity caused by this parasite and as a key component in efforts to eradicate malaria worldwide. Vivax malaria protein 1 (VMP001), a novel chimeric protein that incorporates the amino- and carboxy- terminal regions of the circumsporozoite protein (CSP) and a truncated repeat region that contains repeat sequences from both the VK210 (type 1) and the VK247 (type 2) parasites, was developed as a vaccine candidate for global use.
We conducted a first-in-human Phase 1 dose escalation vaccine study with controlled human malaria infection (CHMI) of VMP001 formulated in the GSK Adjuvant System AS01B. A total of 30 volunteers divided into 3 groups (10 per group) were given 3 intramuscular injections of 15 μg, 30 μg, or 60 μg respectively of VMP001, all formulated in 500 μL of AS01B at each immunization. All vaccinated volunteers participated in a P. vivax CHMI 14 days following the third immunization. Six non-vaccinated subjects served as infectivity controls.
The vaccine was shown to be well tolerated and immunogenic. All volunteers generated robust humoral and cellular immune responses to the vaccine antigen. Vaccination did not induce sterile protection; however, a small but significant delay in time to parasitemia was seen in 59% of vaccinated subjects compared to the control group. An association was identified between levels of anti-type 1 repeat antibodies and prepatent period.
This trial was the first to assess the efficacy of a P. vivax CSP vaccine candidate by CHMI. The association of type 1 repeat-specific antibody responses with delay in the prepatency period suggests that augmenting the immune responses to this domain may improve strain-specific vaccine efficacy. The availability of a P. vivax CHMI model will accelerate the process of P. vivax vaccine development, allowing better selection of candidate vaccines for advancement to field trials.
Journal Article
Evaluation of RTS,S/AS02A and RTS,S/AS01B in Adults in a High Malaria Transmission Area
2009
This study advances the clinical development of the RTS,S/AS01B candidate malaria vaccine to malaria endemic populations. As a primary objective it compares the safety and reactogenicity of RTS,S/AS01B to the more extensively evaluated RTS,S/AS02A vaccine.
A Phase IIb, single centre, double-blind, controlled trial of 6 months duration with a subsequent 6 month single-blind follow-up conducted in Kisumu West District, Kenya between August 2005 and August 2006. 255 healthy adults aged 18 to 35 years were randomized (1ratio1ratio1) to receive 3 doses of RTS,S/AS02A, RTS,S/AS01B or rabies vaccine (Rabipur; Chiron Behring GmbH) at months 0, 1, 2. The primary objective was the occurrence of severe (grade 3) solicited or unsolicited general (i.e. systemic) adverse events (AEs) during 7 days follow up after each vaccination.
Both candidate vaccines had a good safety profile and were well tolerated. One grade 3 systemic AE occurred within 7 days of vaccination (RTS,S/AS01B group). No unsolicited AEs or SAEs were related to vaccine. A marked increase in anti-CS antibody GMTs was observed post Dose 2 of both RTS,S/AS01B (31.6 EU/mL [95% CI: 23.9 to 41.6]) and RTS,S/AS02A (16.7 EU/mL [95% CI: 12.9 to 21.7]). A further increase was observed post Dose 3 in both the RTS,S/AS01B (41.4 EU/mL [95% CI: 31.7 to 54.2]) and RTS,S/AS02A (21.4 EU/mL [95% CI: 16.0 to 28.7]) groups. Anti-CS antibody GMTs were significantly greater with RTS,S/AS01B compared to RTS,S/AS02A at all time points post Dose 2 and Dose 3. Both candidate vaccines produced strong anti-HBs responses. Vaccine efficacy in the RTS,S/AS01B group was 29.5% (95% CI: -15.4 to 56.9, p = 0.164) and in the RTS,S/AS02A group 31.7% (95% CI: -11.6 to 58.2, p = 0.128).
Both candidate malaria vaccines were well tolerated over a 12 month surveillance period. A more favorable immunogenicity profile was observed with RTS,S/AS01B than with RTS,S/AS02A.
Clinicaltrials.gov NCT00197054.
Journal Article
Successful malaria elimination in the Ecuador–Peru border region: epidemiology and lessons learned
2016
Background
In recent years, malaria (
Plasmodium vivax
and
Plasmodium falciparum
) has been successfully controlled in the Ecuador–Peru coastal border region. The aim of this study was to document this control effort and to identify the best practices and lessons learned that are applicable to malaria control and to other vector-borne diseases. A proximal outcome evaluation was conducted of the robust elimination programme in El Oro Province, Ecuador, and the Tumbes Region, Peru. Data collection efforts included a series of workshops with local public health experts who played central roles in the elimination effort, review of epidemiological records from Ministries of Health, and a review of national policy documents. Key programmatic and external factors are identified that determined the success of this eradication effort.
Case description
From the mid 1980s until the early 2000s, the region experienced a surge in malaria transmission, which experts attributed to a combination of ineffective anti-malarial treatment, social-ecological factors (e.g., El Niño, increasing rice farming, construction of a reservoir), and political factors (e.g., reduction in resources and changes in management). In response to the malaria crisis, local public health practitioners from El Oro and Tumbes joined together in the mid-1990s to forge an unofficial binational collaboration for malaria control. Over the next 20 years, they effectively eradicated malaria in the region, by strengthening surveillance and treatment strategies, sharing of resources, operational research to inform policy, and novel interventions.
Discussion and evaluation
The binational collaboration at the operational level was the fundamental component of the successful malaria elimination programme. This unique relationship created a trusting, open environment that allowed for flexibility, rapid response, innovation and resilience in times of crisis, and ultimately a sustainable control programme. Strong community involvement, an extensive microscopy network and ongoing epidemiologic investigations at the local level were also identified as crucial programmatic strategies.
Conclusion
The results of this study provide key principles of a successful malaria elimination programme that can inform the next generation of public health professionals in the region, and serve as a guide to ongoing and future control efforts of other emerging vector borne diseases globally.
Journal Article
Blood Stage Malaria Vaccine Eliciting High Antigen-Specific Antibody Concentrations Confers No Protection to Young Children in Western Kenya
by
Siangla, Joram
,
Angov, Evelina
,
Ockenhouse, Christian F.
in
Animals
,
Antigen-Antibody Complex - blood
,
Antigens
2009
The antigen, falciparum malaria protein 1 (FMP1), represents the 42-kDa C-terminal fragment of merozoite surface protein-1 (MSP-1) of the 3D7 clone of P. falciparum. Formulated with AS02 (a proprietary Adjuvant System), it constitutes the FMP1/AS02 candidate malaria vaccine. We evaluated this vaccine's safety, immunogenicity, and efficacy in African children.
A randomised, double-blind, Phase IIb, comparator-controlled trial.The trial was conducted in 13 field stations of one mile radii within Kombewa Division, Nyanza Province, Western Kenya, an area of holoendemic transmission of P. falciparum. We enrolled 400 children aged 12-47 months in general good health.Children were randomised in a 1ratio1 fashion to receive either FMP1/AS02 (50 microg) or Rabipur(R) rabies vaccine. Vaccinations were administered on a 0, 1, and 2 month schedule. The primary study endpoint was time to first clinical episode of P. falciparum malaria (temperature >/=37.5 degrees C with asexual parasitaemia of >/=50,000 parasites/microL of blood) occurring between 14 days and six months after a third dose. Case detection was both active and passive. Safety and immunogenicity were evaluated for eight months after first immunisations; vaccine efficacy (VE) was measured over a six-month period following third vaccinations.
374 of 400 children received all three doses and completed six months of follow-up. FMP1/AS02 had a good safety profile and was well-tolerated but more reactogenic than the comparator. Geometric mean anti-MSP-1(42) antibody concentrations increased from1.3 microg/mL to 27.3 microg/mL in the FMP1/AS02 recipients, but were unchanged in controls. 97 children in the FMP1/AS02 group and 98 controls had a primary endpoint episode. Overall VE was 5.1% (95% CI: -26% to +28%; p-value = 0.7).
FMP1/AS02 is not a promising candidate for further development as a monovalent malaria vaccine. Future MSP-1(42) vaccine development should focus on other formulations and antigen constructs.
Clinicaltrials.gov NCT00223990.
Journal Article
DNA Prime/Adenovirus Boost Malaria Vaccine Encoding P. falciparum CSP and AMA1 Induces Sterile Protection Associated with Cell-Mediated Immunity
by
Angov, Evelina
,
Richie, Thomas L.
,
Ockenhouse, Christian F.
in
Acquired immune deficiency syndrome
,
Adenoviruses
,
Adenoviruses, Human - genetics
2013
Gene-based vaccination using prime/boost regimens protects animals and humans against malaria, inducing cell-mediated responses that in animal models target liver stage malaria parasites. We tested a DNA prime/adenovirus boost malaria vaccine in a Phase 1 clinical trial with controlled human malaria infection.
The vaccine regimen was three monthly doses of two DNA plasmids (DNA) followed four months later by a single boost with two non-replicating human serotype 5 adenovirus vectors (Ad). The constructs encoded genes expressing P. falciparum circumsporozoite protein (CSP) and apical membrane antigen-1 (AMA1). The regimen was safe and well-tolerated, with mostly mild adverse events that occurred at the site of injection. Only one AE (diarrhea), possibly related to immunization, was severe (Grade 3), preventing daily activities. Four weeks after the Ad boost, 15 study subjects were challenged with P. falciparum sporozoites by mosquito bite, and four (27%) were sterilely protected. Antibody responses by ELISA rose after Ad boost but were low (CSP geometric mean titer 210, range 44-817; AMA1 geometric mean micrograms/milliliter 11.9, range 1.5-102) and were not associated with protection. Ex vivo IFN-γ ELISpot responses after Ad boost were modest (CSP geometric mean spot forming cells/million peripheral blood mononuclear cells 86, range 13-408; AMA1 348, range 88-1270) and were highest in three protected subjects. ELISpot responses to AMA1 were significantly associated with protection (p = 0.019). Flow cytometry identified predominant IFN-γ mono-secreting CD8+ T cell responses in three protected subjects. No subjects with high pre-existing anti-Ad5 neutralizing antibodies were protected but the association was not statistically significant.
The DNA/Ad regimen provided the highest sterile immunity achieved against malaria following immunization with a gene-based subunit vaccine (27%). Protection was associated with cell-mediated immunity to AMA1, with CSP probably contributing. Substituting a low seroprevalence vector for Ad5 and supplementing CSP/AMA1 with additional antigens may improve protection.
ClinicalTrials.govNCT00870987.
Journal Article
First-in-human evaluation of genetically attenuated Plasmodium falciparum sporozoites administered by bite of Anopheles mosquitoes to adult volunteers
2013
•Report on first-in-human safety and immunogenicity testing of a genetically attenuated parasite (GAP) P. falciparum strain.•Five out of six volunteers remained peripheral blood smear negative after GAP-infected mosquitoe bite.•Severe attenuation and favorable immune responses following administration p52−/p36− GAP were observed.•Results suggest that further development of live-attenuated GAP strains using genetic engineering should be pursued.
Immunization with genetically engineered, attenuated malaria parasites (GAP) that arrest during liver infection confers sterile protection in mouse malaria models. A first generation Plasmodium falciparum GAP (Pf p52−/p36− GAP) was previously generated by deletion of two pre-erythrocytic stage-expressed genes (P52 and P36) in the NF54 strain.
A first-in-human, proof-of-concept, safety and immunogenicity clinical trial in six human volunteers was conducted. Exposure consisted of delivery of Pf p52−/p36− GAP sporozoites via infected Anopheles mosquito bite with a five-bite/volunteer exposure followed by an approximately 200-bite exposure/volunteer one month later.
The exposures were well tolerated with mild to moderate local and systemic reactions. All volunteers remained blood stage negative after low dose exposure. Five volunteers remained blood stage negative after high dose exposure. One volunteer developed peripheral parasitemia twelve days after high dose exposure. Together the findings indicate that Pf p52−/p36− GAP was severely but not completely attenuated. All six volunteers developed antibodies to CSP. Furthermore, IFN-γ responses to whole sporozoites and multiple antigens were elicited in 5 of 6 volunteers, with both CD4 and CD8 cell cytokine production detected.
Severe attenuation and favorable immune responses following administration of a first generation Pf p52−/p36− GAP suggests that further development of live-attenuated strains using genetic engineering should be pursued.
Journal Article
A Randomized Controlled Trial of Local Heat Therapy Versus Intravenous Sodium Stibogluconate for the Treatment of Cutaneous Leishmania major Infection
2010
Cutaneous Leishmania major has affected many travelers including military personnel in Iraq and Afghanistan. Optimal treatment for this localized infection has not been defined, but interestingly the parasite is thermosensitive.
Participants with parasitologically confirmed L. major infection were randomized to receive intravenous sodium stibogluconate (SSG) 20mg/kg/day for ten doses or localized ThermoMed (TM) device heat treatment (applied at 50 degrees C for 30 seconds) in one session. Those with facial lesions, infection with other species of Leishmania, or more than 20 lesions were excluded. Primary outcome was complete re-epithelialization or visual healing at two months without relapse over 12 months. Fifty-four/56 enrolled participants received intervention, 27 SSG and 27 TM. In an intent to treat analysis the per subject efficacy at two months with 12 months follow-up was 54% SSG and 48% TM (p = 0.78), and the per lesion efficacy was 59% SSG and 73% TM (p = 0.053). Reversible abdominal pain/pancreatitis, arthralgias, myalgias, headache, fatigue, mild cytopenias, and elevated transaminases were more commonly present in the SSG treated participants, whereas blistering, oozing, and erythema were more common in the TM arm.
Skin lesions due to L. major treated with heat delivered by the ThermoMed device healed at a similar rate and with less associated systemic toxicity than lesions treated with intravenous SSG.
ClinicalTrials.gov NCT 00884377.
Journal Article
Assessing the Diversity and Stability of Cellular Immunity Generated in Response to the Candidate Live-Attenuated Dengue Virus Vaccine TAK-003
by
Gargulak, Morgan
,
Kong, Amanda
,
Currier, Jeffrey R.
in
Antigens
,
Cell-mediated immunity
,
cellular immunity
2019
The development of an efficacious DENV vaccine has been a long-standing public health priority. However, this effort has been complicated significantly due to the hazard presented by incomplete humoral immunity in mediating immune enhancement of infection and disease severity. Therefore, there is a significant need for DENV vaccine platforms capable of generating broad immune responses including durable cellular immunity, as well as novel analytical tools to assess the magnitude, diversity, and persistence of vaccine-elicited immunity. In this study, we demonstrate that a single dose of the recombinant, tetravalent, live-attenuated DENV vaccine TAK-003 elicits potent and durable cellular immunity against both the structural and non-structural proteins of all four DENV serotypes, which is maintained for at least 4 months post-immunization. Although not contained within the vaccine formulation, significant reactivity against the non-structural (NS) proteins of DENV-1,-3, and-4 is observed following vaccination, to an extent directly proportional to the magnitude of responses to the corresponding vaccine (DENV-2) components. Distinct, quantifiable, and durable patterns of DENV antigen reactivity can be observed in individuals following vaccination. Detailed epitope mapping of T cell reactivity against the DENV-2 proteome using a matrix of overlapping peptide pools demonstrated that TAK-003 elicits a broad response directed across the DENV-2 proteome, with focused reactivity against NS1 and NS3. We conclude that, as measured by an IFN-γ ELISPOT assay, a single dose of TAK-003 generates potent T cell-mediated immunity which is durable in magnitude and breadth through 4 months post-vaccination.
Journal Article