Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
15 result(s) for "Poli, Giada"
Sort by:
Functional Differences in Visceral and Subcutaneous Fat Pads Originate from Differences in the Adipose Stem Cell
Metabolic pathologies mainly originate from adipose tissue (AT) dysfunctions. AT differences are associated with fat-depot anatomic distribution in subcutaneous (SAT) and visceral omental (VAT) pads. We address the question whether the functional differences between the two compartments may be present early in the adipose stem cell (ASC) instead of being restricted to the mature adipocytes. Using a specific human ASC model, we evaluated proliferation/differentiation of ASC from abdominal SAT-(S-ASC) and VAT-(V-ASC) paired biopsies in parallel as well as the electrophysiological properties and functional activity of ASC and their in vitro-derived adipocytes. A dramatic difference in proliferation and adipogenic potential was observed between the two ASC populations, S-ASC having a growth rate and adipogenic potential significantly higher than V-ASC and giving rise to more functional and better organized adipocytes. To our knowledge, this is the first comprehensive electrophysiological analysis of ASC and derived-adipocytes, showing electrophysiological properties, such as membrane potential, capacitance and K(+)-current parameters which confirm the better functionality of S-ASC and their derived adipocytes. We document the greater ability of S-ASC-derived adipocytes to secrete adiponectin and their reduced susceptibility to lipolysis. These features may account for the metabolic differences observed between the SAT and VAT. Our findings suggest that VAT and SAT functional differences originate at the level of the adult ASC which maintains a memory of its fat pad of origin. Such stem cell differences may account for differential adipose depot susceptibility to the development of metabolic dysfunction and may represent a suitable target for specific therapeutic approaches.
Fascin-1 Is a Novel Prognostic Biomarker Associated With Tumor Invasiveness in Adrenocortical Carcinoma
Abstract Context Novel tumor markers are urgently needed to better stratify adrenocortical cancer (ACC) patients and improve therapies for this aggressive neoplasm. Objective To assess the diagnostic and prognostic value of the actin-bundling protein fascin-1 (FSCN1) in adrenocortical tumors. Design, Setting and Participants A local series of 37 malignant/37 benign adrenocortical tumors at Careggi University Hospital and two independent validation ACC cohorts (Cochin, TCGA) from the European Network for the Study of Adrenal Tumors were studied. Main Outcome Measures FSCN1 expression was quantified by immunohistochemistry, Western blot and quantitative RT-PCR in ACC specimens; overall and disease-free survival associated with FSCN1 expression were assessed by Kaplan-Meier analysis and compared with that of Ki67 labeling index and tumor stage. Results Despite the low diagnostic power, in the Florence ACC series, FSCN1 immunohistochemical detection appeared as an independent prognostic factor, also refining results obtained with staging and Ki67 labeling index. The robust prognostic power of FSCN1 levels was further confirmed in two independent ACC cohorts. A positive correlation was found between FSCN1 and steroidogenic factor-1 (SF-1), with a substantially higher expression of both factors in ACCs at advanced stages and with at least one of the three Weiss score parameters associated with invasiveness. Moreover, we demonstrated FSCN1 role in promoting cell invasion in a human ACC cell line only in the case of increased SF-1 dosage. Conclusions These findings show that FSCN1 is a novel independent prognostic marker in ACC and may serve as a potential therapeutic target to block tumor spread. Tumor invasion markers are needed to better stratify adrenocortical cancer. We demonstrate the robust independent prognostic power of fascin-1 in three independent adrenocortical cancer cohorts.
Rosiglitazone Inhibits Adrenocortical Cancer Cell Proliferation by Interfering with the IGF-IR Intracellular Signaling
Rosiglitazone (RGZ), a thiazolidinedione ligand of the peroxisome proliferator-activated receptor (PPAR)-γ, has been recently described as possessing antitumoral properties. We investigated RGZ effect on cell proliferation in two cell line models (SW13 and H295R) of human adrenocortical carcinoma (ACC) and its interaction with the signaling pathways of the activated IGF-I receptor (IGF-IR). We demonstrate a high expression of IGF-IR in the two cell lines and in ACC. Cell proliferation is stimulated by IGF-I in a dose- and time-dependent manner and is inhibited by RGZ. The analysis of the main intracellular signaling pathways downstream of the activated IGF-IR, phosphatidyl inositol 3-kinase (PI3K)-Akt, and extracellular signal-regulated kinase (ERK1/2) cascades reveals that RGZ rapidly interferes with the Akt and ERK1/2 phosphorylation/activation which mediates IGF-I stimulated proliferation. In conclusion, our results suggest that RGZ exerts an inhibitory effect on human ACC cell proliferation by interfering with the PI3K/Akt and ERK1/2 signaling pathways downstream of the activated IGF-IR.
The Adipose Stem Cell as a Novel Metabolic Actor in Adrenocortical Carcinoma Progression: Evidence from an In Vitro Tumor Microenvironment Crosstalk Model
Metabolic interplay between the tumor microenvironment and cancer cells is a potential target for novel anti-cancer approaches. Among stromal components, adipocytes and adipose precursors have been shown to actively participate in tumor progression in several solid malignancies. In adrenocortical carcinoma (ACC), a rare endocrine neoplasia with a poor prognosis, cancer cells often infiltrate the fat mass surrounding the adrenal organ, enabling possible crosstalk with the adipose cells. Here, by using an in vitro co-culture system, we show that the interaction between adipose-derived stem cells (ASCs) and the adrenocortical cancer cell line H295R leads to metabolic and functional reprogramming of both cell types: cancer cells limit differentiation and increase proliferation of ASCs, which in turn support tumor growth and invasion. This effect associates with a shift from the paracrine cancer-promoting IGF2 axis towards an ASC-associated leptin axis, along with a shift in the SDF-1 axis towards CXCR7 expression in H295R cells. In conclusion, our findings suggest that adipose precursors, as pivotal components of the ACC microenvironment, promote cancer cell reprogramming and invasion, opening new perspectives for the development of more effective therapeutic approaches.
Role of the PPAR-γ System in Normal and Tumoral Pituitary Corticotropic Cells and Adrenal Cells
PPAR-γ is a member of the nuclear hormone receptor superfamily of transcription factors, whose thiazolidinedione ligands (TZD) have been recently demonstrated to also possess anticancer properties in addition to their well-known insulin-sensitizer and glucose/lipid regulation activity. In this minireview, we summarize the current knowledge on PPAR-γ in normal and tumoral corticotropic pituitary and adrenal cells. The receptor expression has been shown in ACTH-secreting cells in both normal and adenomal pituitary as well as in normal and tumor adrenal cortex. Preclinical studies conducted both in vitro on tumor cells and in vivo on xenograft tumor models obtained by subcutaneous injection of cancer cells have evidenced the anticancer properties of TZD, in particular rosiglitazone (RGZ) and pioglitazone (PIO). In both pituitary and adrenocortical cancer, RGZ treatment results in inhibition of cell proliferation, through G0/G1 cell-cycle arrest and induction of cell apoptosis, leading to significant inhibition of tumor growth in the xenograft tumor models. In addition, since RGZ can reduce ACTH and corticosterone secretion in mouse corticotropic pituitary tumors, both RGZ and PIO have been used in the treatment of Cushing’s disease with variable but generally unsatisfactory results. Discrepancies in the antitumor effects of TZD observed between successful preclinical and unsuccessful clinical studies may be particularly due to differences in treatment duration and doses used.
Role of the PPAR-gamma System in Normal and Tumoral Pituitary Corticotropic Cells and Adrenal Cells
PPAR-[gamma] is a member of the nuclear hormone receptor superfamily of transcription factors, whose thiazolidinedione ligands (TZD) have been recently demonstrated to also possess anticancer properties in addition to their well-known insulin-sensitizer and glucose/lipid regulation activity. In this minireview, we summarize the current knowledge on PPAR-[gamma] in normal and tumoral corticotropic pituitary and adrenal cells. The receptor expression has been shown in ACTH-secreting cells in both normal and adenomal pituitary as well as in normal and tumor adrenal cortex. Preclinical studies conducted both in vitro on tumor cells and in vivo on xenograft tumor models obtained by subcutaneous injection of cancer cells have evidenced the anticancer properties of TZD, in particular rosiglitazone (RGZ) and pioglitazone (PIO). In both pituitary and adrenocortical cancer, RGZ treatment results in inhibition of cell proliferation, through G0/G1 cell-cycle arrest and induction of cell apoptosis, leading to significant inhibition of tumor growth in the xenograft tumor models. In addition, since RGZ can reduce ACTH and corticosterone secretion in mouse corticotropic pituitary tumors, both RGZ and PIO have been used in the treatment of Cushing's disease with variable but generally unsatisfactory results. Discrepancies in the antitumor effects of TZD observed between successful preclinical and unsuccessful clinical studies may be particularly due to differences in treatment duration and doses used. Copyright © 2010 S. Karger AG, Basel [PUBLICATION ABSTRACT]
Role of the PPAR-g System in Normal and Tumoral Pituitary Corticotropic Cells and Adrenal Cells
PPAR-g is a member of the nuclear hormone receptor superfamily of transcription factors, whose thiazolidinedione ligands (TZD) have been recently demonstrated to also possess anticancer properties in addition to their well-known insulin-sensitizer and glucose/lipid regulation activity. In this minireview, we summarize the current knowledge on PPAR-g in normal and tumoral corticotropic pituitary and adrenal cells. The receptor expression has been shown in ACTH-secreting cells in both normal and adenomal pituitary as well as in normal and tumor adrenal cortex. Preclinical studies conducted both in vitro on tumor cells and in vivo on xenograft tumor models obtained by subcutaneous injection of cancer cells have evidenced the anticancer properties of TZD, in particular rosiglitazone (RGZ) and pioglitazone (PIO). In both pituitary and adrenocortical cancer, RGZ treatment results in inhibition of cell proliferation, through G0/G1 cell-cycle arrest and induction of cell apoptosis, leading to significant inhibition of tumor growth in the xenograft tumor models. In addition, since RGZ can reduce ACTH and corticosterone secretion in mouse corticotropic pituitary tumors, both RGZ and PIO have been used in the treatment of Cushing's disease with variable but generally unsatisfactory results. Discrepancies in the antitumor effects of TZD observed between successful preclinical and unsuccessful clinical studies may be particularly due to differences in treatment duration and doses used. Copyright [copy 2010 S. Karger AG, Basel
Rosiglitazone Inhibits Adrenocortical Cancer Cell Proliferation by Interfering with the IGF-IR Intracellular Signaling
Rosiglitazone (RGZ), a thiazolidinedione ligand of the peroxisome proliferator-activated receptor (PPAR)-γ, has been recently described as possessing antitumoral properties. We investigated RGZ effect on cell proliferation in two cell line models (SW13 and H295R) of human adrenocortical carcinoma (ACC) and its interaction with the signaling pathways of the activated IGF-I receptor (IGF-IR). We demonstrate a high expression of IGF-IR in the two cell lines and in ACC. Cell proliferation is stimulated by IGF-I in a dose- and time-dependent manner and is inhibited by RGZ. The analysis of the main intracellular signaling pathways downstream of the activated IGF-IR, phosphatidyl inositol 3-kinase (PI3K)-Akt, and extracellular signal-regulated kinase (ERK1/2) cascades reveals that RGZ rapidly interferes with the Akt and ERK1/2 phosphorylation/activation which mediates IGF-I stimulated proliferation. In conclusion, our results suggest that RGZ exerts an inhibitory effect on human ACC cell proliferation by interfering with the PI3K/Akt and ERK1/2 signaling pathways downstream of the activated IGF-IR.