Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
176 result(s) for "Poline, Jean-Baptiste"
Sort by:
Standardizing workflows in imaging transcriptomics with the abagen toolbox
Gene expression fundamentally shapes the structural and functional architecture of the human brain. Open-access transcriptomic datasets like the Allen Human Brain Atlas provide an unprecedented ability to examine these mechanisms in vivo; however, a lack of standardization across research groups has given rise to myriad processing pipelines for using these data. Here, we develop the abagen toolbox, an open-access software package for working with transcriptomic data, and use it to examine how methodological variability influences the outcomes of research using the Allen Human Brain Atlas. Applying three prototypical analyses to the outputs of 750,000 unique processing pipelines, we find that choice of pipeline has a large impact on research findings, with parameters commonly varied in the literature influencing correlations between derived gene expression and other imaging phenotypes by as much as ρ ≥ 1.0. Our results further reveal an ordering of parameter importance, with processing steps that influence gene normalization yielding the greatest impact on downstream statistical inferences and conclusions. The presented work and the development of the abagen toolbox lay the foundation for more standardized and systematic research in imaging transcriptomics, and will help to advance future understanding of the influence of gene expression in the human brain.
Ongoing dynamics in large-scale functional connectivity predict perception
Most brain activity occurs in an ongoing manner not directly locked to external events or stimuli. Regional ongoing activity fluctuates in unison with some brain regions but not others, and the degree of long-range coupling is called functional connectivity, often measured with correlation. Strength and spatial distributions of functional connectivity dynamically change in an ongoing manner over seconds to minutes, even when the external environment is held constant. Direct evidence for any behavioral relevance of these continuous large-scale dynamics has been limited. Here, we investigated whether ongoing changes in baseline functional connectivity correlate with perception. In a continuous auditory detection task, participants perceived the target sound in roughly one-half of the trials. Very long (22–40 s) interstimulus intervals permitted investigation of baseline connectivity unaffected by preceding evoked responses. Using multivariate classification, we observed that functional connectivity before the target predicted whether it was heard or missed. Using graph theoretical measures, we characterized the difference in functional connectivity between states that lead to hits vs. misses. Before misses compared with hits and task-free rest, connectivity showed reduced modularity, a measure of integrity of modular network structure. This effect was strongest in the default mode and visual networks and caused by both reduced within-network connectivity and enhanced across-network connections before misses. The relation of behavior to prestimulus connectivity was dissociable from that of prestimulus activity amplitudes. In conclusion, moment to moment dynamic changes in baseline functional connectivity may shape subsequent behavioral performance. A highly modular network structure seems beneficial to perceptual efficiency.
Scanning the horizon: towards transparent and reproducible neuroimaging research
Key Points There is growing concern about the reproducibility of scientific research, and neuroimaging research suffers from many features that are thought to lead to high levels of false results. Statistical power of neuroimaging studies has increased over time but remains relatively low, especially for group comparison studies. An analysis of effect sizes in the Human Connectome Project demonstrates that most functional MRI studies are not sufficiently powered to find reasonable effect sizes. Neuroimaging analysis has a high degree of flexibility in analysis methods, which can lead to inflated false-positive rates unless controlled for. Pre-registration of analysis plans and clear delineation of hypothesis-driven and exploratory research are potential solutions to this problem. The use of appropriate corrections for multiple tests has increased, but some common methods can have highly inflated false-positive rates. The use of non-parametric methods is encouraged to provide accurate correction for multiple tests. Software errors have the potential to lead to incorrect or irreproducible results. The adoption of improved software engineering methods and software testing strategies can help to reduce such problems. Reproducibility will be improved through greater transparency in methods reporting and through increased sharing of data and code. Neuroimaging techniques are increasingly applied by the wider neuroscience community. However, problems such as low statistical power, flexibility in data analysis and software issues pose challenges to interpreting neuroimaging data in a meaningful and reliable way. Here, Poldrack et al . discuss these and other problems, and suggest solutions. Functional neuroimaging techniques have transformed our ability to probe the neurobiological basis of behaviour and are increasingly being applied by the wider neuroscience community. However, concerns have recently been raised that the conclusions that are drawn from some human neuroimaging studies are either spurious or not generalizable. Problems such as low statistical power, flexibility in data analysis, software errors and a lack of direct replication apply to many fields, but perhaps particularly to functional MRI. Here, we discuss these problems, outline current and suggested best practices, and describe how we think the field should evolve to produce the most meaningful and reliable answers to neuroscientific questions.
Micapipe: A pipeline for multimodal neuroimaging and connectome analysis
•Micapipe is a comprehensive pipeline to process multimodal MRI data.•Micapipe generates matrices describing cortico-cortical microstructural similarity, functional connectivity, structural connectivity, and spatial proximity.•The pipeline provides easy-to-verify outputs and visualizations for quality control.•Outputs are hierarchically organized with BIDS-conform naming.•Our evaluations show reproducible processing across several 3T and 7T datasets. Multimodal magnetic resonance imaging (MRI) has accelerated human neuroscience by fostering the analysis of brain microstructure, geometry, function, and connectivity across multiple scales and in living brains. The richness and complexity of multimodal neuroimaging, however, demands processing methods to integrate information across modalities and to consolidate findings across different spatial scales. Here, we present micapipe, an open processing pipeline for multimodal MRI datasets. Based on BIDS-conform input data, micapipe can generate i) structural connectomes derived from diffusion tractography, ii) functional connectomes derived from resting-state signal correlations, iii) geodesic distance matrices that quantify cortico-cortical proximity, and iv) microstructural profile covariance matrices that assess inter-regional similarity in cortical myelin proxies. The above matrices can be automatically generated across established 18 cortical parcellations (100–1000 parcels), in addition to subcortical and cerebellar parcellations, allowing researchers to replicate findings easily across different spatial scales. Results are represented on three different surface spaces (native, conte69, fsaverage5), and outputs are BIDS-conform. Processed outputs can be quality controlled at the individual and group level. micapipe was tested on several datasets and is available at https://github.com/MICA-MNI/micapipe, documented at https://micapipe.readthedocs.io/, and containerized as a BIDS App http://bids-apps.neuroimaging.io/apps/. We hope that micapipe will foster robust and integrative studies of human brain microstructure, morphology, function, cand connectivity.
Orthogonalization of Regressors in fMRI Models
The occurrence of collinearity in fMRI-based GLMs (general linear models) may reduce power or produce unreliable parameter estimates. It is commonly believed that orthogonalizing collinear regressors in the model will solve this problem, and some software packages apply automatic orthogonalization. However, the effects of orthogonalization on the interpretation of the resulting parameter estimates is widely unappreciated or misunderstood. Here we discuss the nature and causes of collinearity in fMRI models, with a focus on the appropriate uses of orthogonalization. Special attention is given to how the two popular fMRI data analysis software packages, SPM and FSL, handle orthogonalization, and pitfalls that may be encountered in their usage. Strategies are discussed for reducing collinearity in fMRI designs and addressing their effects when they occur.
Best practices in data analysis and sharing in neuroimaging using MRI
Responding to widespread concerns about reproducibility, the Organization for Human Brain Mapping created a working group to identify best practices in data analysis, results reporting and data sharing to promote open and reproducible research in neuroimaging. We describe the challenges of open research and the barriers the field faces. Given concerns about the reproducibility of scientific findings, neuroimaging must define best practices for data analysis, results reporting, and algorithm and data sharing to promote transparency, reliability and collaboration. We describe insights from developing a set of recommendations on behalf of the Organization for Human Brain Mapping and identify barriers that impede these practices, including how the discipline must change to fully exploit the potential of the world's neuroimaging data.
An empirical evaluation of functional alignment using inter-subject decoding
•Methods that improve inter-subject decoding accuracy reduce inter-individual variability without losing signal specificity.•Functional alignment methods consistently improve inter-subject decoding on several datasets, with the best methods recovering half of the signal lost in anatomical-only alignment.•For whole-brain alignment, piecewise alignment (performed in non-overlapping regions) is more accurate and much more efficient than searchlight alignment.•Shared Response Model and Optimal Transport yield highest decoding accuracy gains. Inter-individual variability in the functional organization of the brain presents a major obstacle to identifying generalizable neural coding principles. Functional alignment—a class of methods that matches subjects’ neural signals based on their functional similarity—is a promising strategy for addressing this variability. To date, however, a range of functional alignment methods have been proposed and their relative performance is still unclear. In this work, we benchmark five functional alignment methods for inter-subject decoding on four publicly available datasets. Specifically, we consider three existing methods: piecewise Procrustes, searchlight Procrustes, and piecewise Optimal Transport. We also introduce and benchmark two new extensions of functional alignment methods: piecewise Shared Response Modelling (SRM), and intra-subject alignment. We find that functional alignment generally improves inter-subject decoding accuracy though the best performing method depends on the research context. Specifically, SRM and Optimal Transport perform well at both the region-of-interest level of analysis as well as at the whole-brain scale when aggregated through a piecewise scheme. We also benchmark the computational efficiency of each of the surveyed methods, providing insight into their usability and scalability. Taking inter-subject decoding accuracy as a quantification of inter-subject similarity, our results support the use of functional alignment to improve inter-subject comparisons in the face of variable structure-function organization. We provide open implementations of all methods used.
Nature abhors a paywall: How open science can realize the potential of naturalistic stimuli
Naturalistic stimuli show significant potential to inform behavioral, cognitive, and clinical neuroscience. To date, this impact is still limited by the relative inaccessibility of both generated neuroimaging data as well as the supporting naturalistic stimuli. In this perspective, we highlight currently available naturalistic datasets and technical solutions such as DataLad that continue to advance our ability to share this data. We also review scientific and sociological challenges in selecting naturalistic stimuli for reproducible research. Overall, we encourage researchers to share their naturalistic datasets to the full extent possible under local copyright law.
The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments
The development of magnetic resonance imaging (MRI) techniques has defined modern neuroimaging. Since its inception, tens of thousands of studies using techniques such as functional MRI and diffusion weighted imaging have allowed for the non-invasive study of the brain. Despite the fact that MRI is routinely used to obtain data for neuroscience research, there has been no widely adopted standard for organizing and describing the data collected in an imaging experiment. This renders sharing and reusing data (within or between labs) difficult if not impossible and unnecessarily complicates the application of automatic pipelines and quality assurance protocols. To solve this problem, we have developed the Brain Imaging Data Structure (BIDS), a standard for organizing and describing MRI datasets. The BIDS standard uses file formats compatible with existing software, unifies the majority of practices already common in the field, and captures the metadata necessary for most common data processing operations.
NeuroVault.org: a web-based repository for collecting and sharing unthresholded statistical maps of the human brain
Here we present NeuroVault-a web based repository that allows researchers to store, share, visualize, and decode statistical maps of the human brain. NeuroVault is easy to use and employs modern web technologies to provide informative visualization of data without the need to install additional software. In addition, it leverages the power of the Neurosynth database to provide cognitive decoding of deposited maps. The data are exposed through a public REST API enabling other services and tools to take advantage of it. NeuroVault is a new resource for researchers interested in conducting meta- and coactivation analyses.