Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
9 result(s) for "Pollaro, Jim"
Sort by:
Triheptanoin versus trioctanoin for long-chain fatty acid oxidation disorders: a double blinded, randomized controlled trial
Background Observational reports suggest that supplementation that increases citric acid cycle intermediates via anaplerosis may have therapeutic advantages over traditional medium-chain triglyceride (MCT) treatment of long-chain fatty acid oxidation disorders (LC-FAODs) but controlled trials have not been reported. The goal of our study was to compare the effects of triheptanoin (C7), an anaplerotic seven-carbon fatty acid triglyceride, to trioctanoin (C8), an eight-carbon fatty acid triglyceride, in patients with LC-FAODs. Methods A double blinded, randomized controlled trial of 32 subjects with LC-FAODs (carnitine palmitoyltransferase-2, very long-chain acylCoA dehydrogenase, trifunctional protein or long-chain 3-hydroxy acylCoA dehydrogenase deficiencies) who were randomly assigned a diet containing 20% of their total daily energy from either C7 or C8 for 4 months was conducted. Primary outcomes included changes in total energy expenditure (TEE), cardiac function by echocardiogram, exercise tolerance, and phosphocreatine recovery following acute exercise. Secondary outcomes included body composition, blood biomarkers, and adverse events, including incidence of rhabdomyolysis. Results Patients in the C7 group increased left ventricular (LV) ejection fraction by 7.4% ( p  = 0.046) while experiencing a 20% ( p  = 0.041) decrease in LV wall mass on their resting echocardiogram. They also required a lower heart rate for the same amount of work during a moderate-intensity exercise stress test when compared to patients taking C8. There was no difference in TEE, phosphocreatine recovery, body composition, incidence of rhabdomyolysis, or any secondary outcome measures between the groups. Conclusions C7 improved LV ejection fraction and reduced LV mass at rest, as well as lowering heart rate during exercise among patients with LC-FAODs. Clinical Trial Registration: Clinicaltrials.gov NCT01379625.
Spatio-Temporal Patterns of Demyelination and Remyelination in the Cuprizone Mouse Model
Cuprizone administration in mice provides a reproducible model of demyelination and spontaneous remyelination, and has been useful in understanding important aspects of human disease, including multiple sclerosis. In this study, we apply high spatial resolution quantitative MRI techniques to establish the spatio-temporal patterns of acute demyelination in C57BL/6 mice after 6 weeks of cuprizone administration, and subsequent remyelination after 6 weeks of post-cuprizone recovery. MRI measurements were complemented with Black Gold II stain for myelin and immunohistochemical stains for associated tissue changes. Gene expression was evaluated using the Allen Gene Expression Atlas. Twenty-five C57BL/6 male mice were split into control and cuprizone groups; MRI data were obtained at baseline, after 6 weeks of cuprizone, and 6 weeks post-cuprizone. High-resolution (100 μm isotropic) whole-brain coverage magnetization transfer ratio (MTR) parametric maps demonstrated concurrent caudal-to-rostral and medial-to-lateral gradients of MTR decrease within corpus callosum (CC) that correlated well with demyelination assessed histologically. Our results show that demyelination was not limited to the midsagittal line of the corpus callosum, and also that opposing gradients of demyelination occur in the lateral and medial CC. T2-weighted MRI gray/white matter contrast was strong at baseline, weak after 6 weeks of cuprizone treatment, and returned to a limited extent after recovery. MTR decreases during demyelination were observed throughout the brain, most clearly in callosal white matter. Myelin damage and repair appear to be influenced by proximity to oligodendrocyte progenitor cell populations and exhibit an inverse correlation with myelin basic protein gene expression. These findings suggest that susceptibility to injury and ability to repair vary across the brain, and whole-brain analysis is necessary to accurately characterize this model. Whole-brain parametric mapping across time is essential for gaining a real understanding of disease processes in-vivo. MTR increases in healthy mice throughout adolescence and adulthood were observed, illustrating the need for appropriate age-matched controls. Elucidating the unique and site-specific demyelination in the cuprizone model may offer new insights into in mechanisms of both damage and repair in human demyelinating diseases.
Magnetic Resonance Imaging and Spectroscopy Assessment of Lower Extremity Skeletal Muscles in Boys with Duchenne Muscular Dystrophy: A Multicenter Cross Sectional Study
Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder that results in functional deficits. However, these functional declines are often not able to be quantified in clinical trials for DMD until after age 7. In this study, we hypothesized that (1)H2O T2 derived using (1)H-MRS and MRI-T2 will be sensitive to muscle involvement at a young age (5-7 years) consistent with increased inflammation and muscle damage in a large cohort of DMD subjects compared to controls. MR data were acquired from 123 boys with DMD (ages 5-14 years; mean 8.6 SD 2.2 years) and 31 healthy controls (age 9.7 SD 2.3 years) using 3-Tesla MRI instruments at three institutions (University of Florida, Oregon Health & Science University, and Children's Hospital of Philadelphia). T2-weighted multi-slice spin echo (SE) axial images and single voxel 1H-MRS were acquired from the lower leg and thigh to measure lipid fraction and (1)H2O T2. MRI-T2, (1)H2O T2, and lipid fraction were greater (p<0.05) in DMD compared to controls. In the youngest age group, DMD values were different (p<0.05) than controls for the soleus MRI-T2, (1)H2O T2 and lipid fraction and vastus lateralis MRI-T2 and (1)H2O T2. In the boys with DMD, MRI-T2 and lipid fraction were greater (p<0.05) in the oldest age group (11-14 years) than the youngest age group (5-6.9 years), while 1H2O T2 was lower in the oldest age group compared to the young age group. Overall, MR measures of T2 and lipid fraction revealed differences between DMD and Controls. Furthermore, MRI-T2 was greater in the older age group compared to the young age group, which was associated with higher lipid fractions. Overall, MR measures of T2 and lipid fraction show excellent sensitivity to DMD disease pathologies and potential therapeutic interventions in DMD, even in the younger boys.
Imaging Alveolar-Capillary Gas Transfer Using Hyperpolarized$^{129}Xe$MRI
Effective pulmonary gas exchange relies on the free diffusion of gases across the thin tissue barrier separating airspace from the capillary red blood cells (RBCs). Pulmonary pathologies, such as inflammation, fibrosis, and edema, which cause an increased blood-gas barrier thickness, impair the efficiency of this exchange. However, definitive assessment of such gas-exchange abnormalities is challenging, because no methods currently exist to directly image the gas transfer process. Here we exploit the solubility and chemical shift of$^{129}Xe$, the magnetic resonance signal of which has been enhanced by 10⠵ with hyperpolarization, to differentially image its transfer from the airspaces into the tissue barrier spaces and RBCs in the gas exchange regions of the lung. Based on a simple diffusion model, we estimate that this MR imaging method for measuring$^{129}Xe$alveolar-capillary transfer is sensitive to changes in blood-gas barrier thickness of ≈5 μm. We validate the successful separation of tissue barrier and RBC images and show the utility of this method in a rat model of pulmonary fibrosis where$^{l29}Xe$replenishment of the RBCs is severely impaired in regions of lung injury.
Imaging alveolar–capillary gas transfer using hyperpolarized 129Xe MRI
Effective pulmonary gas exchange relies on the free diffusion of gases across the thin tissue barrier separating airspace from the capillary red blood cells (RBCs). Pulmonary pathologies, such as inflammation, fibrosis, and edema, which cause an increased blood–gas barrier thickness, impair the efficiency of this exchange. However, definitive assessment of such gas-exchange abnormalities is challenging, because no methods currently exist to directly image the gas transfer process. Here we exploit the solubility and chemical shift of 129 Xe, the magnetic resonance signal of which has been enhanced by 10 5 with hyperpolarization, to differentially image its transfer from the airspaces into the tissue barrier spaces and RBCs in the gas exchange regions of the lung. Based on a simple diffusion model, we estimate that this MR imaging method for measuring 129 Xe alveolar-capillary transfer is sensitive to changes in blood–gas barrier thickness of ≈5 μm. We validate the successful separation of tissue barrier and RBC images and show the utility of this method in a rat model of pulmonary fibrosis where 129 Xe replenishment of the RBCs is severely impaired in regions of lung injury. diffusing capacity fibrosis gas exchange blood–gas barrier
Imaging alveolar-capillary gas transfer using hyperpolarized ^sup 129^Xe MRI
Effective pulmonary gas exchange relies on the free diffusion of gases across the thin tissue barrier separating airspace from the capillary red blood cells (RBCs). Pulmonary pathologies, such as inflammation, fibrosis, and edema, which cause an increased blood-gas barrier thickness, impair the efficiency of this exchange. However, definitive assessment of such gas-exchange abnormalities is challenging, because no methods currently exist to directly image the gas transfer process. Here we exploit the solubility and chemical shift of ...Xe, the magnetic resonance signal of which has been enhanced by 10... with hyperpolarization, to differentially image its transfer from the airspaces into the tissue barrier spaces and RBCs in the gas exchange regions of the lung. Based on a simple diffusion model, we estimate that this MR imaging method for measuring ...Xe alveolar-capillary transfer is sensitive to changes in blood-gas barrier thickness of ...5 ...m. We validate the successful separation of tissue barrier and RBC images and show the utility of this method in a rat model of pulmonary fibrosis where ...Xe replenishment of the RBCs is severely impaired in regions of lung injury. (ProQuest Information and Learning: ... denotes formulae omitted.)
Imaging alveolar–capillary gas transfer using hyperpolarized 129 Xe MRI
Effective pulmonary gas exchange relies on the free diffusion of gases across the thin tissue barrier separating airspace from the capillary red blood cells (RBCs). Pulmonary pathologies, such as inflammation, fibrosis, and edema, which cause an increased blood–gas barrier thickness, impair the efficiency of this exchange. However, definitive assessment of such gas-exchange abnormalities is challenging, because no methods currently exist to directly image the gas transfer process. Here we exploit the solubility and chemical shift of 129 Xe, the magnetic resonance signal of which has been enhanced by 10 5 with hyperpolarization, to differentially image its transfer from the airspaces into the tissue barrier spaces and RBCs in the gas exchange regions of the lung. Based on a simple diffusion model, we estimate that this MR imaging method for measuring 129 Xe alveolar-capillary transfer is sensitive to changes in blood–gas barrier thickness of ≈5 μm. We validate the successful separation of tissue barrier and RBC images and show the utility of this method in a rat model of pulmonary fibrosis where 129 Xe replenishment of the RBCs is severely impaired in regions of lung injury.
Imaging alveolar-capillary gas transfer using hyperpolarized super(129)Xe MRI
Effective pulmonary gas exchange relies on the free diffusion of gases across the thin tissue barrier separating airspace from the capillary red blood cells (RBCs). Pulmonary pathologies, such as inflammation, fibrosis, and edema, which cause an increased blood-gas barrier thickness, impair the efficiency of this exchange. However, definitive assessment of such gas-exchange abnormalities is challenging, because no methods currently exist to directly image the gas transfer process. Here we exploit the solubility and chemical shift of super(129)Xe, the magnetic resonance signal of which has been enhanced by 10 super(5) with hyperpolarization, to differentially image its transfer from the airspaces into the tissue barrier spaces and RBCs in the gas exchange regions of the lung. Based on a simple diffusion model, we estimate that this MR imaging method for measuring super(129)Xe alveolar-capillary transfer is sensitive to changes in blood-gas barrier thickness of approximately 5 mu m. We validate the successful separation of tissue barrier and RBC images and show the utility of this method in a rat model of pulmonary fibrosis where super(129)Xe replenishment of the RBCs is severely impaired in regions of lung injury.
Stimulant medications affect arousal and reward, not attention
Prescription stimulants such as methylphenidate are being used by an increasing portion of the population, primarily children. These potent norepinephrine and dopamine reuptake inhibitors promote wakefulness, suppress appetite, enhance physical performance, and are purported to increase attentional abilities. Prior functional magnetic resonance imaging (fMRI) studies have yielded conflicting results about the effects of stimulants on the brain's attention, action/motor, and salience regions that are difficult to reconcile with their proposed attentional effects. Here, we utilized resting-state fMRI (rs-fMRI) data from the large Adolescent Brain Cognitive Development (ABCD) Study to understand the effects of stimulants on brain functional connectivity (FC) in children ( = 11,875; 8-11 years old) using network level analysis (NLA). We validated these brain-wide association study (BWAS) findings in a controlled, precision imaging drug trial (PIDT) with highly-sampled (165-210 minutes) healthy adults receiving high-dose methylphenidate (Ritalin, 40 mg). In both studies, stimulants were associated with altered FC in action and motor regions, matching patterns of norepinephrine transporter expression. Connectivity was also changed in the salience (SAL) and parietal memory networks (PMN), which are important for reward-motivated learning and closely linked to dopamine, but not the brain's attention systems (e.g. dorsal attention network, DAN). Stimulant-related differences in FC closely matched the rs-fMRI pattern of getting enough sleep, as well as EEG- and respiration-derived brain maps of arousal. Taking stimulants rescued the effects of sleep deprivation on brain connectivity and school grades. The combined noradrenergic and dopaminergic effects of stimulants may drive brain organization towards a more wakeful and rewarded configuration, explaining improved task effort and persistence without direct effects on attention networks.