Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
300 result(s) for "Polo, Jose M."
Sort by:
Transcriptional signature in microglia associated with Aβ plaque phagocytosis
The role of microglia cells in Alzheimer’s disease (AD) is well recognized, however their molecular and functional diversity remain unclear. Here, we isolated amyloid plaque-containing (using labelling with methoxy-XO4, XO4 + ) and non-containing (XO4 − ) microglia from an AD mouse model. Transcriptomics analysis identified different transcriptional trajectories in ageing and AD mice. XO4 + microglial transcriptomes demonstrated dysregulated expression of genes associated with late onset AD. We further showed that the transcriptional program associated with XO4 + microglia from mice is present in a subset of human microglia isolated from brains of individuals with AD. XO4 − microglia displayed transcriptional signatures associated with accelerated ageing and contained more intracellular post-synaptic material than XO4 + microglia, despite reduced active synaptosome phagocytosis. We identified HIF1α as potentially regulating synaptosome phagocytosis in vitro using primary human microglia, and BV2 mouse microglial cells. Together, these findings provide insight into molecular mechanisms underpinning the functional diversity of microglia in AD. Microglia associated with Aβ plaques may have a distinct transcriptional signature compared to those in plaque-free areas of the brain in Alzheimer’s disease (AD) models. Here the authors show that amyloid plaque phagocytosis is associated with a specific microglia transcriptional signature in a mouse model of AD.
Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells
Polo et al . show that early-passage induced pluripotent stem cells retain an epigenetic memory of their cell type of origin. These epigenetic differences affect the cells’ differentiation potential and might be exploited to generate particular cell types of interest. Induced pluripotent stem cells (iPSCs) have been derived from various somatic cell populations through ectopic expression of defined factors. It remains unclear whether iPSCs generated from different cell types are molecularly and functionally similar. Here we show that iPSCs obtained from mouse fibroblasts, hematopoietic and myogenic cells exhibit distinct transcriptional and epigenetic patterns. Moreover, we demonstrate that cellular origin influences the in vitro differentiation potentials of iPSCs into embryoid bodies and different hematopoietic cell types. Notably, continuous passaging of iPSCs largely attenuates these differences. Our results suggest that early-passage iPSCs retain a transient epigenetic memory of their somatic cells of origin, which manifests as differential gene expression and altered differentiation capacity. These observations may influence ongoing attempts to use iPSCs for disease modeling and could also be exploited in potential therapeutic applications to enhance differentiation into desired cell lineages.
A predictive computational framework for direct reprogramming between human cell types
Owen Rackham, Jose Polo, Julian Gough and colleagues present a method, Mogrify, for predicting sets of transcription factors that can induce transdifferentiation between cell types. They show that Mogrify is able to predict known factors for published cell conversions and experimentally validate factors for two new conversions. Transdifferentiation, the process of converting from one cell type to another without going through a pluripotent state, has great promise for regenerative medicine. The identification of key transcription factors for reprogramming is currently limited by the cost of exhaustive experimental testing of plausible sets of factors, an approach that is inefficient and unscalable. Here we present a predictive system (Mogrify) that combines gene expression data with regulatory network information to predict the reprogramming factors necessary to induce cell conversion. We have applied Mogrify to 173 human cell types and 134 tissues, defining an atlas of cellular reprogramming. Mogrify correctly predicts the transcription factors used in known transdifferentiations. Furthermore, we validated two new transdifferentiations predicted by Mogrify. We provide a practical and efficient mechanism for systematically implementing novel cell conversions, facilitating the generalization of reprogramming of human cells. Predictions are made available to help rapidly further the field of cell conversion.
Comprehensive characterization of distinct states of human naive pluripotency generated by reprogramming
This study compares naive human pluripotent stem cells, either reprogrammed directly from somatic cells or converted from primed cells, under a variety of culture conditions. Recent reports on the characteristics of naive human pluripotent stem cells (hPSCs) obtained using independent methods differ. Naive hPSCs have been mainly derived by conversion from primed hPSCs or by direct derivation from human embryos rather than by somatic cell reprogramming. To provide an unbiased molecular and functional reference, we derived genetically matched naive hPSCs by direct reprogramming of fibroblasts and by primed-to-naive conversion using different naive conditions (NHSM, RSeT, 5iLAF and t2iLGöY). Our results show that hPSCs obtained in these different conditions display a spectrum of naive characteristics. Furthermore, our characterization identifies KLF4 as sufficient for conversion of primed hPSCs into naive t2iLGöY hPSCs, underscoring the role that reprogramming factors can play for the derivation of bona fide naive hPSCs.
High ploidy large cytoplasmic megakaryocytes are hematopoietic stem cells regulators and essential for platelet production
Megakaryocytes (MK) generate platelets. Recently, we and others, have reported MK also regulate hematopoietic stem cells (HSC). Here we show high ploidy large cytoplasmic megakaryocytes (LCM) are critical negative regulators of HSC and critical for platelet formation. Using a mouse knockout model ( Pf4-Srsf3 Δ/Δ ) with normal MK numbers, but essentially devoid of LCM, we demonstrate a pronounced increase in BM HSC concurrent with endogenous mobilization and extramedullary hematopoiesis. Severe thrombocytopenia is observed in animals with diminished LCM, although there is no change in MK ploidy distribution, uncoupling endoreduplication and platelet production. When HSC isolated from a microenvironment essentially devoid of LCM reconstitute hematopoiesis in lethally irradiated mice, the absence of LCM increases HSC in BM, blood and spleen, and the recapitulation of thrombocytopenia. In contrast, following a competitive transplant using minimal numbers of WT HSC together with HSC from a microenvironment with diminished LCM, sufficient WT HSC-generated LCM regulates a normal HSC pool and prevents thrombocytopenia. Importantly, LCM are conserved in humans. Not all megakaryocytes are created equal, with sub-populations identified that generate platelets and differentially regulate blood stem cells. These sub-populations, conserved in humans, are important in treating blood and clotting disorders.
Transient naive reprogramming corrects hiPS cells functionally and epigenetically
Cells undergo a major epigenome reconfiguration when reprogrammed to human induced pluripotent stem cells (hiPS cells). However, the epigenomes of hiPS cells and human embryonic stem (hES) cells differ significantly, which affects hiPS cell function 1 – 8 . These differences include epigenetic memory and aberrations that emerge during reprogramming, for which the mechanisms remain unknown. Here we characterized the persistence and emergence of these epigenetic differences by performing genome-wide DNA methylation profiling throughout primed and naive reprogramming of human somatic cells to hiPS cells. We found that reprogramming-induced epigenetic aberrations emerge midway through primed reprogramming, whereas DNA demethylation begins early in naive reprogramming. Using this knowledge, we developed a transient-naive-treatment (TNT) reprogramming strategy that emulates the embryonic epigenetic reset. We show that the epigenetic memory in hiPS cells is concentrated in cell of origin-dependent repressive chromatin marked by H3K9me3, lamin-B1 and aberrant CpH methylation. TNT reprogramming reconfigures these domains to a hES cell-like state and does not disrupt genomic imprinting. Using an isogenic system, we demonstrate that TNT reprogramming can correct the transposable element overexpression and differential gene expression seen in conventional hiPS cells, and that TNT-reprogrammed hiPS and hES cells show similar differentiation efficiencies. Moreover, TNT reprogramming enhances the differentiation of hiPS cells derived from multiple cell types. Thus, TNT reprogramming corrects epigenetic memory and aberrations, producing hiPS cells that are molecularly and functionally more similar to hES cells than conventional hiPS cells. We foresee TNT reprogramming becoming a new standard for biomedical and therapeutic applications and providing a novel system for studying epigenetic memory. A new reprogramming strategy used to produce human induced pluripotent stem cells from somatic cells results in epigenetic and functional profiles that are highly similar to those of human embryonic stem cells.
Identification of dynamic undifferentiated cell states within the male germline
The role of stem cells in tissue maintenance is appreciated and hierarchical models of stem cell self-renewal and differentiation often proposed. Stem cell activity in the male germline is restricted to undifferentiated A-type spermatogonia (A undiff ); however, only a fraction of this population act as stem cells in undisturbed testis and A undiff hierarchy remains contentious. Through newly developed compound reporter mice, here we define molecular signatures of self-renewing and differentiation-primed adult A undiff fractions and dissect A undiff heterogeneity by single-cell analysis. We uncover an unappreciated population within the self-renewing A undiff fraction marked by expression of embryonic patterning genes and homeodomain transcription factor PDX1. Importantly, we find that PDX1 marks a population with potent stem cell capacity unique to mature, homeostatic testis and demonstrate dynamic interconversion between PDX1+ and PDX1− A undiff states upon transplant and culture. We conclude that A undiff exist in a series of dynamic cell states with distinct function and provide evidence that stability of such states is dictated by niche-derived cues. Sustained spermatogenesis depends on stem cell activity which is contained within a population of undifferentiated spermatogonia. Here, the authors identify a new population of undifferentiated spermatogonia in adult testis that expresses the transcription factor PDX1 and has stem cell capacity.
Incomplete DNA methylation underlies a transcriptional memory of somatic cells in human iPS cells
Human induced pluripotent stem (iPS) cells are remarkably similar to embryonic stem (ES) cells, but recent reports indicate that there may be important differences between them. We carried out a systematic comparison of human iPS cells generated from hepatocytes (representative of endoderm), skin fibroblasts (mesoderm) and melanocytes (ectoderm). All low-passage iPS cells analysed retain a transcriptional memory of the original cells. The persistent expression of somatic genes can be partially explained by incomplete promoter DNA methylation. This epigenetic mechanism underlies a robust form of memory that can be found in iPS cells generated by multiple laboratories using different methods, including RNA transfection. Incompletely silenced genes tend to be isolated from other genes that are repressed during reprogramming, indicating that recruitment of the silencing machinery may be inefficient at isolated genes. Knockdown of the incompletely reprogrammed gene C9orf64 (chromosome 9 open reading frame 64) reduces the efficiency of human iPS cell generation, indicating that somatic memory genes may be functionally relevant during reprogramming. A systematic comparison shows that differential DNA methylation accounts for some of the differences in somatic gene expression between induced pluripotent stem cells (iPSCs) and embryonic stem cells. The somatic genes that have persistent expression in iPSCs tend to be isolated from other genes that undergo silencing during reprogramming. This may explain the observed delay in recruitment of the DNA methylation machinery and in the genes being silenced.
Nr6a1 controls Hox expression dynamics and is a master regulator of vertebrate trunk development
The vertebrate main-body axis is laid down during embryonic stages in an anterior-to-posterior (head-to-tail) direction, driven and supplied by posteriorly located progenitors. Whilst posterior expansion and segmentation appears broadly uniform along the axis, there is developmental and evolutionary support for at least two discrete modules controlling processes within different axial regions: a trunk and a tail module. Here, we identify Nuclear receptor subfamily 6 group A member 1 (Nr6a1) as a master regulator of trunk development in the mouse. Specifically, Nr6a1 was found to control vertebral number and segmentation of the trunk region, autonomously from other axial regions. Moreover, Nr6a1 was essential for the timely progression of Hox signatures, and neural versus mesodermal cell fate choice, within axial progenitors. Collectively, Nr6a1 has an axially-restricted role in all major cellular and tissue-level events required for vertebral column formation, supporting the view that changes in Nr6a1 levels may underlie evolutionary changes in axial formulae. The authors identify Nuclear receptor subfamily 6 group A member 1 (Nr6a1) as a master regulator of elongation, segmentation, patterning and lineage allocation specifically within the trunk region of the mouse, acting downstream of the major signals known to control vertebral column formation.
Apicobasal RNA asymmetries regulate cell fate in the early mouse embryo
The spatial sorting of RNA transcripts is fundamental for the refinement of gene expression to distinct subcellular regions. Although, in non-mammalian early embryogenesis, differential RNA localisation presages cell fate determination, in mammals it remains unclear. Here, we uncover apical-to-basal RNA asymmetries in outer blastomeres of 16-cell stage mouse preimplantation embryos. Basally directed RNA transport is facilitated in a microtubule- and lysosome-mediated manner. Yet, despite an increased accumulation of RNA transcripts in basal regions, higher translation activity occurs at the more dispersed apical RNA foci, demonstrated by spatial heterogeneities in RNA subtypes, RNA-organelle interactions and translation events. During the transition to the 32-cell stage, the biased inheritance of RNA transcripts, coupled with differential translation capacity, regulates cell fate allocation of trophectoderm and cells destined to form the pluripotent inner cell mass. Our study identifies a paradigm for the spatiotemporal regulation of post-transcriptional gene expression governing mammalian preimplantation embryogenesis and cell fate. How do cells of the preimplantation mouse embryo make decisions? Here the authors discovered that the spatial sorting of mRNAs, tRNA, rRNAs and organelles lead to localized translation, conducive for cell fate allocation and embryonic development.