Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
19 result(s) for "Poloni, Tino Emanuele"
Sort by:
Microglial Senescence and Activation in Healthy Aging and Alzheimer’s Disease: Systematic Review and Neuropathological Scoring
The greatest risk factor for neurodegeneration is the aging of the multiple cell types of human CNS, among which microglia are important because they are the “sentinels” of internal and external perturbations and have long lifespans. We aim to emphasize microglial signatures in physiologic brain aging and Alzheimer’s disease (AD). A systematic literature search of all published articles about microglial senescence in human healthy aging and AD was performed, searching for PubMed and Scopus online databases. Among 1947 articles screened, a total of 289 articles were assessed for full-text eligibility. Microglial transcriptomic, phenotypic, and neuropathological profiles were analyzed comprising healthy aging and AD. Our review highlights that studies on animal models only partially clarify what happens in humans. Human and mice microglia are hugely heterogeneous. Like a two-sided coin, microglia can be protective or harmful, depending on the context. Brain health depends upon a balance between the actions and reactions of microglia maintaining brain homeostasis in cooperation with other cell types (especially astrocytes and oligodendrocytes). During aging, accumulating oxidative stress and mitochondrial dysfunction weaken microglia leading to dystrophic/senescent, otherwise over-reactive, phenotype-enhancing neurodegenerative phenomena. Microglia are crucial for managing Aβ, pTAU, and damaged synapses, being pivotal in AD pathogenesis.
The expression pattern of GDF15 in human brain changes during aging and in Alzheimer’s disease
Growth Differentiation Factor 15 (GDF15) is a mitochondrial-stress-responsive molecule whose expression strongly increases with aging and age-related diseases. However, its role in neurodegenerative diseases, including Alzheimer's disease (AD), is still debated. We have characterized the expression of GDF15 in brain samples from AD patients and non-demented subjects (controls) of different ages. Although no difference in CSF levels of GDF15 was found between AD patients and controls, GDF15 was expressed in different brain areas and seems to be predominantly localized in neurons. The ratio between its mature and precursor form was higher in the frontal cortex of AD patients compared to age-matched controls (  < 0.05). Moreover, this ratio was even higher for centenarians (  < 0.01), indicating that aging also affects GDF15 expression and maturation. A lower expression of OXPHOS complexes I, III, and V in AD patients compared to controls was also noticed, and a positive correlation between and mRNA levels was observed. Finally, when GDF15 was silenced in dermal fibroblasts, a decrease in OXPHOS complexes transcript levels and an increase in levels were observed. Although GDF15 seems not to be a reliable CSF marker for AD, it is highly expressed in aging and AD brains, likely as a part of stress response aimed at counteracting mitochondrial dysfunction and neuroinflammation.
Mitochondrial Alterations, Oxidative Stress, and Therapeutic Implications in Alzheimer’s Disease: A Narrative Review
The relationship between aging, mitochondrial dysfunction, neurodegeneration, and the onset of Alzheimer’s disease (AD) is a complex area of study. Aging is the primary risk factor for AD, and it is associated with a decline in mitochondrial function. This mitochondrial dysfunction is believed to contribute to the neurodegenerative processes observed in AD. Neurodegeneration in AD is characterized by the progressive loss of synapses and neurons, particularly in regions of the brain involved in memory and cognition. It is hypothesized that mitochondrial dysfunction plays a pivotal role by disrupting cellular energy metabolism and increasing the production of reactive oxygen species (ROS), which can damage cellular components and exacerbate neuronal loss. Despite extensive research, the precise molecular pathways linking mitochondrial dysfunction to AD pathology are not fully understood. Various hypotheses have been proposed, including the mitochondrial cascade hypothesis, which suggests that mitochondrial dysfunction is an early event in AD pathogenesis that triggers a cascade of cellular events leading to neurodegeneration. With this narrative review, we aim to summarize some specific issues in the literature on mitochondria and their involvement in AD onset, with a focus on the development of therapeutical strategies targeting the mitochondria environment and their potential application for the treatment of AD itself.
Dementia and Risk Factors: Results from a Prospective, Population-Based Cohort Study
The incidence rate of dementia varies between studies. The influence of some sociodemographic factors is reasonably established, but less is known about the role of comorbidities, which are common in the elderly. The objectives of this study was to estimate the incidence of dementia in a population of Italian elders and evaluate the role of walking speed, comorbidity and ApoE-ɛ4 as well as various sociodemographic factors on the new onset of dementia. The InveCe.Ab study is a population-based longitudinal study in people born between 1935 and 1939 and resident in Abbiategrasso, Milan, Italy. After excluding subjects with a diagnosis of dementia and those without a definite diagnosis, 1103 individuals with a median follow-up time of 4.1 years were included in the analyses. The cumulative four-year incidence of dementia was 5.3%. Demographic factors such as old age, male, less educated, ApoE-ɛ4 carrier status and slower gait were risk factors for dementia onset in a cognitively healthy sub-cohort. Comorbidity did not influence the onset of dementia; instead, slow walking speed appears to be a strong predictor of dementia onset.
An Open Question: Is the A2A Adenosine Receptor a Novel Target for Alzheimer’s Disease Treatment?
[...]the disease begins decades earlier with amyloid accumulation in the neocortex but amyloid deposition, which is very common even in physiological aging, is not sufficient to cause AD. [...]oligomers can reduce blood flow in brain capillaries and induce hyperphosphorylation of the AD-relevant epitopes of TAU protein (Selkoe and Hardy 2016;Nortley et al., 2019). [...]Aβ load triggers neurodegeneration through oligomers which induce unbalanced activation of neuronal kinases resulting in excessive production of pTAU that, in turn, aggregates in pTAU toxic oligomers and spreads from its initial location in allocortex to neocortex. On the basis of the neuropathological picture, several biomarkers have been developed for the in vivo definition of the pathology. [...]the ATN system (Amyloid-TAU-Neurodegeneration) has been set up including 1) estimate of the amyloid load: Aβ decrease in cerebrospinal fluid (CSF) and/or Aβ cortical accumulation at amyloid-PET; 2) pTAU valuation: pTAU increase in CSF and/or pTAU cortical accumulation at TAU-PET; 3) extent of neurodegeneration: atrophic pattern at brain MRI and/or hypometabolism at FDG-PET and/or increase of total-TAU in CSF (Jack et al., 2018b;Chételat et al., 2020). [...]amyloid reduction is only one aspect of the therapeutic approach and there is increasing attention to non-amyloid targets with 121 agents having clinical trials in course for the treatment of AD (Cummings et al., 2020).
Alzheimer and Purinergic Signaling: Just a Matter of Inflammation?
Alzheimer’s disease (AD) is a widespread neurodegenerative pathology responsible for about 70% of all cases of dementia. Adenosine is an endogenous nucleoside that affects neurodegeneration by activating four membrane G protein-coupled receptor subtypes, namely P1 receptors. One of them, the A2A subtype, is particularly expressed in the brain at the striatal and hippocampal levels and appears as the most promising target to counteract neurological damage and adenosine-dependent neuroinflammation. Extracellular nucleotides (ATP, ADP, UTP, UDP, etc.) are also released from the cell or are synthesized extracellularly. They activate P2X and P2Y membrane receptors, eliciting a variety of physiological but also pathological responses. Among the latter, the chronic inflammation underlying AD is mainly caused by the P2X7 receptor subtype. In this review we offer an overview of the scientific evidence linking P1 and P2 mediated purinergic signaling to AD development. We will also discuss potential strategies to exploit this knowledge for drug development.
A2A Adenosine Receptor as a Potential Biomarker and a Possible Therapeutic Target in Alzheimer’s Disease
Alzheimer’s disease (AD) is one of the most common neurodegenerative pathologies. Its incidence is in dramatic growth in Western societies and there is a need of both biomarkers to support the clinical diagnosis and drugs for the treatment of AD. The diagnostic criteria of AD are based on clinical data. However, it is necessary to develop biomarkers considering the neuropathology of AD. The A2A receptor, a G-protein coupled member of the P1 family of adenosine receptors, has different functions crucial for neurodegeneration. Its activation in the hippocampal region regulates synaptic plasticity and in particular glutamate release, NMDA receptor activation and calcium influx. Additionally, it exerts effects in neuroinflammation, regulating the secretion of pro-inflammatory cytokines. In AD patients, its expression is increased in the hippocampus/entorhinal cortex more than in the frontal cortex, a phenomenon not observed in age-matched control brains, indicating an association with AD pathology. It is upregulated in peripheral blood cells of patients affected by AD, thus reflecting its increase at central neuronal level. This review offers an overview on the main AD biomarkers and the potential role of A2A adenosine receptor as a new marker and therapeutic target.
From brain collections to modern brain banks: A historical perspective
Our current knowledge of the structure, function, and diseases of the brain comes from direct examination of its substance. In the last centuries, only a few elite had managed to retrieve, gather, and preserve the elusive brain for their own research. The resulting brain collections, stored in formalin-filled jars or dried up in cabinets, served anatomical, neuropathological, anthropometric, ideological, and diagnostic purposes. In the 1960s, the first modern brain banks actively collecting and strategically preserving both diseased and healthy brains to be consequently distributed to the scientific community were instituted. In an era where state-of-the-art biochemical “Omic” studies and advanced metabolic and molecular neuroimaging exist, it is now, more than ever, that postmortem brain investigations must be performed. Only through the comparison and integration of postmortem neuropathological and biochemical findings and antemortem data from clinical, neuropsychological neuroimaging, and other biomarker examinations can we truly understand neurological disease mechanisms. Brain banks supplying brain specimens, antemortem information, and postmortem diagnosis are a major benefactor of brain research.
Centrin 2: A Novel Marker of Mature and Neoplastic Human Astrocytes
As microtubule organizing centers, centrosomes play a pivotal role in cell division as well as in neurodevelopment and neuronal maturation. Among centrosomal proteins, centrin-2 (CETN2) contributes also to DNA repair mechanisms which are fundamental to prevent genomic instability during neural stem cell pool expansion. Nevertheless, the expression profile of CETN2 in human neural stem cells and their progeny is currently unknown. To address this question, we interrogated a platform of human neuroepithelial stem (NES) cells derived from post-mortem developing brain or established from pluripotent cells, and demonstrated that while CETN2 retains its centrosomal location in proliferating NES cells, its expression pattern changes upon differentiation. In particular, we found that CETN2 is selectively expressed in mature astrocytes with a broad cytoplasmic distribution. We then extended our findings on human autoptic nervous tissue samples. We investigated CETN2 distribution in diverse anatomical areas along the rostro-caudal neuraxis and pointed out a peculiar topography of CETN2-labelled astrocytes in humans which was not appreciable in murine tissues, where CETN2 was mostly confined to ependymal cells. As prototypical condition with glial overproliferation, we also explored CETN2 expression in glioblastoma multiforme, reporting a focal concentration of CETN2 in neoplastic astrocytes. This study expands CETN2 localization beyond centrosomes and reveals a unique expression pattern which makes it eligible as a novel astrocytic molecular marker, thus opening new roads to glial biology and human neural conditions.
COVID-19 Pathology in the Lung, Kidney, Heart and Brain: The Different Roles of T-Cells, Macrophages, and Microthrombosis
Here, we aim to describe COVID-19 pathology across different tissues to clarify the disease’s pathophysiology. Lungs, kidneys, hearts, and brains from nine COVID-19 autopsies were compared by using antibodies against SARS-CoV-2, macrophages-microglia, T-lymphocytes, B-lymphocytes, and activated platelets. Alzheimer’s Disease pathology was also assessed. PCR techniques were used to verify the presence of viral RNA. COVID-19 cases had a short clinical course (0–32 days) and their mean age was 77.4 y/o. Hypoxic changes and inflammatory infiltrates were present across all tissues. The lymphocytic component in the lungs and kidneys was predominant over that of other tissues (p < 0.001), with a significantly greater presence of T-lymphocytes in the lungs (p = 0.020), which showed the greatest presence of viral antigens. The heart showed scant SARS-CoV-2 traces in the endothelium–endocardium, foci of activated macrophages, and rare lymphocytes. The brain showed scarce SARS-CoV-2 traces, prominent microglial activation, and rare lymphocytes. The pons exhibited the highest microglial activation (p = 0.017). Microthrombosis was significantly higher in COVID-19 lungs (p = 0.023) compared with controls. The most characteristic pathological features of COVID-19 were an abundance of T-lymphocytes and microthrombosis in the lung and relevant microglial hyperactivation in the brainstem. This study suggests that the long-term sequelae of COVID-19 derive from persistent inflammation, rather than persistent viral replication.