Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
23 result(s) for "Pomba, C"
Sort by:
Risk factors for faecal colonisation with Escherichia coli producing extended-spectrum and plasmid-mediated AmpC β-lactamases in dogs
The aim of this study was to assess the prevalence and risk factors for faecal carriage of extended-spectrum β-lactamase (ESBL) and plasmidic AmpC β-lactamase (pAmpC) Escherichia coli producers in dogs. A three-month cross-sectional study was conducted and 151 rectal swabs were obtained from healthy dogs. ESBL and pAmpC genes were detected by PCR and were sequenced. Logistic regression models were used to investigate risk factors for the carriage of ESBL and pAmpC-producing E. coli. About 15 per cent of the isolates carried ESBL genes (blaCTX-M-32 n=8, blaCTX-M-15 n=5, blaCTX-M-1 n=3, blaCTX-M-9-like n=4) and 20 per cent carried pAmpC genes (blaCMY-2 n=23, blaCMY-2-like n=2). Thirteen dogs carried an E. coli isolate with both an ESBL and a pAmpC gene. One E. coli isolate harboured the human blaDHA-1 pAmpC gene, which has not been previously reported in companion animals in Europe. Dogs with a history of antimicrobial therapy in the past year had a higher risk of being carriers of ESBL-producing (P=0.003, OR =7.85) and pAmpC-producing (P=0.005, OR=6.28) E. coli. Dogs from shelter/breeders were approximately three times more likely to have an ESBL- or a pAmpC-producing E. coli than dogs from private owners. Males have a reduced risk of carrying a pAmpC-producing E. coli than females (P=0.017, OR =0.28). The knowledge of potential risk factors may help to limit the impact of resistance through implementation of effective control measures and judicious antimicrobial therapy.
Prevalence of meticillin-resistant staphylococci among dogs and cats at a veterinary teaching hospital in Portugal
Luk-I shows a strong toxicity on various polymorphonuclear cells, including human leucocytes, and SIET has an exfoliative effect on dogs, with development of clinical signs similar to the signs of canine pyoderma ( Ruscher and others 2010 ). Since phagocytosis by polymorphonuclear cells is an important defence mechanism of the host, Luk-I may play a primary role in MRSP ST71 evasion of the host defence mechanisms.\\n This MRSA lineage has previously been associated with small animals in the UK and Ireland ( Loeffler and others 2005 , Moodley and others 2006 ). [...]the MRSP carriage rate (6.2 per cent) observed in dogs in this study was relatively high considering that MRSP was first described in Europe in 2006 and in Portugal in 2009.
Characterization of Staphylococcus pseudintermedius isolated from diseased dogs in Lithuania
The aim of this study was to characterize Staphylococcus pseudintermedius for its antimicrobial resistance and virulence factors with a special focus on methicillin-resistant (MRSP) strains isolated from sick dogs in Lithuania. Clinically sick adult dogs suffering from infections (n=214) and bitches with reproductive disorders (n=36) from kennels were selected for the study. Samples (n=192) from the 250 tested (76.8%) dogs were positive for Staphylococcus spp. Molecular profiling using the species-specific nuc gene identified 51 isolates as S. pseudintermedius (26.6% from a total number of isolated staphylococci) of which 15 isolates were identified as MRSP. Ten MRSP isolates were isolated from bitches with reproductive disorders from two large breeding kennels. Data on susceptibility of S. pseudintermedius to different antimicrobials revealed that all isolates were susceptible to vancomycin, daptomycin and linezolid. Two isolates (3.9%) were resistant to rifampicin. A high resistance was seen towards penicillin G (94.1%), tetracycline (64.7%) and macrolides (68.7%). Resistance to fluoroquinolones ranged from 25.5% (gatifloxacin) to 31.4% (ciprofloxacin). The most prevalent genes encoding resistance included blaZ, aac(6')-Ie-aph(2'')-Ia, mecA, and tet(M). The Luk-I gene encoding a leukotoxin was detected in 29% of the isolates, whereas the siet gene encoding exfoliative toxin was detected in 69% of the S. pseudintermedius isolates. This report of MRSP in companion animals represents a major challenge for veterinarians in terms of antibiotic therapy and is a concern for both animal and public health.
Genomic and phenotypic characterization of Escherichia coli isolates recovered from the uterus of puerperal dairy cows
The role of Escherichia coli in the pathogenesis of the puerperal uterine infection of the cow is largely unknown. It is proposed that E. coli favors the persistence of Arcanobacterium pyogenes and gram-negative bacteria that are pivotal to the establishment of the infection. Here, we report the genomic and phenotypic characteristics of 72 E. coli isolates recovered from the uterus of dairy cows with normal puerperium (n=12; 35 isolates) or clinical metritis (n=18; 37 isolates), in an attempt to identify characteristics that are related to the establishment of uterine infection. We evaluated DNA fingerprints generated by repetitive element sequence-based PCR, phylogenetic grouping, the presence of 15 virulence factor genes, in vitro biofilm formation and its relationship to curli fimbriae expression, and cellulose production. We found a wide genetic diversity (40 clonal types), including types common to normal puerperium and clinical metritis cows (n=6), as well as types specific to normal puerperium (n=14) or clinical metritis (n=20) cows. Isolates were assigned to phylogenetic groups B1 (58%), A (31%), and D (11%). Only 4 virulence factor genes were detected (hlyE, hlyA, iuc, and eaeA). In vitro biofilm formation was significantly affected by culture medium and incubation temperature. Curli fimbriae expression and cellulose production, although related to biofilm formation, were not required for it. None of the evaluated E. coli characteristics were significantly related to the establishment of the uterine infection. In conclusion, data presented in this paper indicate that E. coli isolates recovered from the uterus of puerperal cows present a wide genetic diversity, do not belong to a known pathogenic group, and have a low potential of virulence and persistence. This corroborates the putative role of the bacterium in the pathogenesis of the puerperal uterine infection of the cow.
Companion animals-An overlooked and misdiagnosed reservoir of carbapenem resistance
The dissemination of antimicrobial-resistance is a major global threat affecting both human and animal health. Carbapenems are human use β-lactams of last resort; thus. the dissemination of carbapenemase-producing (CP) bacteria creates severe limitations for the treatment of multidrug-resistant bacteria in hospitalized patients. Even though carbapenems are not routinely used in veterinary medicine, reports of infection or colonization by carbapenemase-producing Enterobacterales in companion animals are being reported. NDM-5 and OXA-48-like carbapenemases are among the most frequently reported in companion animals. Like in humans, Escherichia coli and Klebsiella pneumoniae are the most represented CP Enterobacterales found in companion animals, alongside with Acinetobacter baumannii. Considering that the detection of carbapenemase-producing Enterobacterales presents several difficulties, misdiagnosis of CP bacteria in companion animals may lead to important animal and public-health consequences. It is of the upmost importance to ensure an adequate monitoring and detection of CP bacteria in veterinary microbiology in order to safeguard animal health and minimise its dissemination to humans and the environment. This review encompasses an overview of the carbapenemase detection methods currently available, aiming to guide veterinary microbiologists on the best practices to improve its detection for clinical or research purposes.
Staphylococcus aureus CC398: Host Adaptation and Emergence of Methicillin Resistance in Livestock
Since its discovery in the early 2000s, methicillin-resistant Staphylococcus aureus (MRSA) clonal complex 398 (CC398) has become a rapidly emerging cause of human infections, most often associated with livestock exposure. We applied whole-genome sequence typing to characterize a diverse collection of CC398 isolates ( n = 89), including MRSA and methicillin-susceptible S. aureus (MSSA) from animals and humans spanning 19 countries and four continents. We identified 4,238 single nucleotide polymorphisms (SNPs) among the 89 core genomes. Minimal homoplasy (consistency index = 0.9591) was detected among parsimony-informative SNPs, allowing for the generation of a highly accurate phylogenetic reconstruction of the CC398 clonal lineage. Phylogenetic analyses revealed that MSSA from humans formed the most ancestral clades. The most derived lineages were composed predominantly of livestock-associated MRSA possessing three different staphylococcal cassette chromosome mec element (SCC mec ) types (IV, V, and VII-like) including nine subtypes. The human-associated isolates from the basal clades carried phages encoding human innate immune modulators that were largely missing among the livestock-associated isolates. Our results strongly suggest that livestock-associated MRSA CC398 originated in humans as MSSA. The lineage appears to have undergone a rapid radiation in conjunction with the jump from humans to livestock, where it subsequently acquired tetracycline and methicillin resistance. Further analyses are required to estimate the number of independent genetic events leading to the methicillin-resistant sublineages, but the diversity of SCC mec subtypes is suggestive of strong and diverse antimicrobial selection associated with food animal production. IMPORTANCE Modern food animal production is characterized by densely concentrated animals and routine antibiotic use, which may facilitate the emergence of novel antibiotic-resistant zoonotic pathogens. Our findings strongly support the idea that livestock-associated MRSA CC398 originated as MSSA in humans. The jump of CC398 from humans to livestock was accompanied by the loss of phage-carried human virulence genes, which likely attenuated its zoonotic potential, but it was also accompanied by the acquisition of tetracycline and methicillin resistance. Our findings exemplify a bidirectional zoonotic exchange and underscore the potential public health risks of widespread antibiotic use in food animal production. Modern food animal production is characterized by densely concentrated animals and routine antibiotic use, which may facilitate the emergence of novel antibiotic-resistant zoonotic pathogens. Our findings strongly support the idea that livestock-associated MRSA CC398 originated as MSSA in humans. The jump of CC398 from humans to livestock was accompanied by the loss of phage-carried human virulence genes, which likely attenuated its zoonotic potential, but it was also accompanied by the acquisition of tetracycline and methicillin resistance. Our findings exemplify a bidirectional zoonotic exchange and underscore the potential public health risks of widespread antibiotic use in food animal production.
Staphylococcus aureus causing skin and soft tissue infections in companion animals : antimicrobial resistance profiles and clonal lineages
Staphylococcus aureus is a relevant agent of skin and soft tissue infections (SSTIs) in animals. Fifty-five S. aureus comprising all SSTI-related isolates in companion animals, collected between 1999 and 2018 (Lab 1) or 2017 and 2018 (Lab 2), were characterized regarding susceptibility to antibiotics and heavy metals and carriage of antimicrobial resistance determinants. Clonal lineages were established by PFGE, MLST and agr typing. Over half of the isolates (56.4%, 31/55) were methicillin-resistant S. aureus (MRSA), and 14.5% showed a multidrug resistance (MDR) phenotype. Resistance was most frequently observed for beta-lactams (81.8%, related to blaZ and/or mecA), fluoroquinolones (56.4%) and macrolides/lincosamides (14.5%, related to erm(A) or erm(C)). The distributions of heavy-metal MICs allowed the detection of non-wild-type populations associated with several resistance genes. The collection showed genetic diversity, with prevalence of clonal lineage ST22-agrI (45.5%, 25/55), comprising only MRSA isolates, and several less frequently detected clones, including ST5-agrII (14.6%, 8/55), ST398-agrI (9.1%, 5/55) and ST72-agrI (7.3%, 4/55). This work highlights the high frequency of SSTI-related MRSA strains that reflect the clonal lineages circulating both in companion animals and humans in Portugal, reinforcing the need for a One Health approach when studying staphylococci causing infections in companion animals.
Virulence potential of biofilm-producing Staphylococcus pseudintermedius, Staphylococcus aureus and Staphylococcus coagulans causing skin infections in companion animals
Coagulase-positive staphylococci (CoPS) account for most bacteria-related pyoderma in companion animals. Emergence of methicillin-resistant strains of Staphylococcus pseudintermedius (MRSP), Staphylococcus aureus (MRSA) or Staphylococcus coagulans (MRSC), often with multidrug-resistant (MDR) phenotypes, is a public health concern. The study collection comprised 237 staphylococci (S. pseudintermedius (n = 155), S. aureus (n = 55) and S. coagulans (n = 27)) collected from companion animals, previously characterized regarding resistance patterns and clonal lineages. Biofilm production was detected for 51.0% (79/155), 94.6% (52/55) and 88.9% (24/27) of the S. pseudintermedius, S. aureus and S. coagulans, respectively, and was a frequent trait of the predominant S. pseudintermedius and S. aureus clonal lineages. The production of biofilm varied with NaCl supplementation of the growth media. All S. pseudintermedius and S. aureus strains carried icaADB. Kaplan–Meier survival analysis of Galleria mellonella infected with different CoPS revealed a higher virulence potential of S. aureus when compared with other CoPS. Our study highlights a high frequency of biofilm production by prevalent antimicrobial-resistant clonal lineages of CoPS associated with animal pyoderma, potentially related with a higher virulence potential and persistent or recurrent infections.
Reflection paper on MRSA in food-producing and companion animals: epidemiology and control options for human and animal health
The scope of this reflection paper was to review the latest research on the risk of MRSA infection and colonization in animals. Attention focused on occurrence, risk factors for colonization and infection, and human contact hazard for livestock, horses, and companion animals. Whereas the clonal relationship between MRSA strains of CC398 is straightforward in livestock this is less obvious in horses. Small companion animals typically share MRSA strains that seem to exchange with a human reservoir. Management and therapeutic options have been suggested for livestock, horses, companion animals, as well as instructions on safety measures for persons in contact with animals. Conclusions were drawn with emphasis on future research activities, especially to confirm the apparent evolution of the organism and to demonstrate efficiency of control strategies.
Human and companion animal proteus mirabilis sharing
Proteus mirabilis is an important pathogen that is associated with urinary tract infections. This study aims to determine the colonization and sharing of P. mirabilis between healthy companion animals and humans that are living together and to evaluate the clonal relatedness of the fecal and clinical stains. Eighteen households (24 humans, 18 dogs, 8 cats) with at least one human–animal pair were studied. Fecal samples were plated onto MacConkey and Hektoen agar and P. mirabilis PFGE analysis (NotI; Dice/UPGMA; 1.5% tolerance) was conducted for the households with multiple positive participants. Antimicrobial-resistance was tested according to CLSI. The fecal P. mirabilis pulse-types were compared with uropathogenic clinical strains (n = 183). Forty-nine P. mirabilis were isolated from eight households. The percentage of colonization in the dogs (44.4%, n = 8/18) was significantly higher (p = 0.0329) than in the humans (12.5%, n = 3/24). Three households had multiple colonized participants. One human–dog pair shared related P. mirabilis strains, which clustered with a clinical strain of animal origin (82.5%). One fecal P. mirabilis strain, from a dog, clustered with two human community-acquired clinical strains (80.9%, 88.9%). To our knowledge, this is the first report of dogs and humans living in close contact and sharing related P. mirabilis strains. The high frequency of colonization in the dogs underlines their possible role as P. mirabilis reservoirs for humans and other dogs.